-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathoptimize.py
305 lines (261 loc) · 8.91 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import sys, os
import time
import math
from math import sqrt
import logging
import warnings
import numpy as np
from scipy import sparse
import numpy.linalg as linalg
import matplotlib.pyplot as plt
logger = logging.getLogger('vidstab.'+__name__)
sqeuclidean = lambda x: np.inner(x,x)
def nonneg(array):
"""projection of array onto non-negative orthant
operation amounts to an elementwise max(0,val)
"""
for x in np.nditer(array, op_flags=['readwrite'], order='K'):
x[...] = max(0, x)
return array
def proj_linf_ball(array, radius):
"""projection of array onto L_infinity norm ball (L_1 dual norm) of radius
operation amounts to an elementwise min(radius,val)
"""
for x in np.nditer(array, op_flags=['readwrite'], order='K'):
x[...] = max(-radius, min(radius, x))
return array
def soft_threshold(x, t):
"""soft thresholding operator (Prox operator for L1 norm)"""
return np.sign(x)*np.maximum(np.abs(x)-t, 0)
def prox_0(x, t):
return x
def prox_box_constraint(x, l, u):
"""Compute prox of indicator of box constraint, defined by lower and upper bound"""
xc = np.copy(x)
xc[xc<l] = l
xc[xc>u] = u
return xc
matD1 = None
def D1(x):
"""compute transpose of first order discrete (forward) difference of x"""
# TODO: make more efficient by vector offset subtraction
global matD1
if matD1 is None:
N = len(x)
matD1 = -np.eye(N) + np.eye(N, k=1)
matD1[-1:] = np.zeros((1, N))
return matD1.dot(x)
matD1T = None
def D1T(x):
"""compute transpose of first order discrete (forward) difference of x"""
# TODO: make more efficient by vector offset subtraction
global matD1T
if matD1T is None:
N = len(x)
matD1T = -np.eye(N) + np.eye(N, k=-1)
matD1T[:, -1:] = np.zeros((N,1))
return matD1T.dot(x)
matD2 = None
def D2(x):
"""compute transpose of second order discrete (forward) difference of x"""
# TODO: make more efficient by vector offset subtraction
global matD2
if matD2 is None:
N = len(x)
matD2 = np.eye(N) + -2*np.eye(N, k=1) + np.eye(N, k=2)
matD2[-2:] = np.zeros((1, N))
return matD2.dot(x)
matD2T = None
def D2T(x):
"""compute transpose of second order discrete (forward) difference of x"""
# TODO: make more efficient by vector offset subtraction
global matD2T
if matD2T is None:
N = len(x)
matD2T = np.eye(N) + -2*np.eye(N, k=-1) + np.eye(N, k=-2)
matD2T[:, -2:] = np.zeros((N,1))
return matD2T.dot(x)
def huber(x, mu):
xc = np.copy(x)
absxc = np.abs(xc)
mask = (np.abs(xc)>mu)
xc[mask] = absxc[mask] - 0.5*mu
xc[~mask] = np.power(xc[~mask], 2)/(2*mu)
return np.sum(np.abs(xc))
def grad_huber(x, mu):
"""compute clip function (gradient of huber loss), (projection onto sym. range set)"""
xc = np.copy(x)
mask = (np.abs(xc)>mu)
xc[mask] = mu*np.sign(xc[mask])
return xc
def forw_L2_huber(x, xhat, lamb, mu):
"""Compute forward operation of 1/2*||x-xhat||^2 + lambda*||Dx||_1
Args:
x: opt. var
xhat: target (constant)
lamb: weighting for Huber regularization term
mu: huber smoothing coeff.
"""
return 0.5*sqeuclidean(x-xhat) + lamb*huber(D2(x), mu)
def grad_L2_huber(x, xhat, lamb, mu):
"""Compute gradient of 1/2*||x-xhat||^2 + lambda*||Dx||_1
Args:
x: opt. var
xhat: target (constant)
lamb: weighting for Huber regularization term
mu: huber smoothing coeff.
"""
grad = (x-xhat) + (lamb/mu)*D2T(grad_huber(D2(x), mu))
return grad
def forw_L2_huber_2(x, xhat, lamb1, lamb2, mu):
"""Compute forward operation of 1/2*||x-xhat||^2 + lambda*||Dx||_1
Args:
x: opt. var
xhat: target (constant)
lamb: weighting for Huber regularization term
mu: huber smoothing coeff.
"""
return 0.5*sqeuclidean(x-xhat) + lamb1*huber(D1(x), mu) + lamb2*huber(D2(x), mu)
def grad_L2_huber_2(x, xhat, lamb1, lamb2, mu):
"""Compute gradient of 1/2*||x-xhat||^2 + lambda*||Dx||_1
Args:
x: opt. var
xhat: target (constant)
lamb: weighting for Huber regularization term
mu: huber smoothing coeff.
"""
grad = (x-xhat) + (lamb1/mu)*D1T(grad_huber(D1(x), mu)) + (lamb2/mu)*D2T(grad_huber(D2(x), mu))
return grad
def forw_L2_huber_3(x, xhat, lamb, mu):
"""Compute forward operation of 1/2*||x-xhat||^2 + lambda*||Dx||_1
Args:
x: opt. var
xhat: target (constant)
lamb: weighting for Huber regularization term
mu: huber smoothing coeff.
"""
return 0.5*sqeuclidean(x-xhat) + lamb*huber(D1(x), mu)
def grad_L2_huber_3(x, xhat, lamb, mu):
"""Compute gradient of 1/2*||x-xhat||^2 + lambda*||Dx||_1
Args:
x: opt. var
xhat: target (constant)
lamb: weighting for Huber regularization term
mu: huber smoothing coeff.
"""
grad = (x-xhat) + (lamb/mu)*D1T(grad_huber(D1(x), mu))
return grad
def positive_root(t, tprev, thetaprev):
"""compute positive root of: tprev*theta^2 = t*thetaprev^2 * (1-theta)"""
lhs = -t*thetaprev**2
rhs = sqrt((t**2) * (thetaprev**4) - 4*tprev*t*(thetaprev**2))
roots = (lhs + np.array((1, -1))*rhs)/(2*tprev)
return roots[roots>0]
def positive_root_2(t, tprev, thetaprev):
r = tprev/t
return thetaprev*(sqrt(4*r+thetaprev**2) - thetaprev)/(2*r)
def positive_root_3(t, tprev, thetaprev):
return 0.5*(1 + sqrt(1 + 4*tprev**2))
def optimize(*args, **kwargs):
return FISTA_method1(*args, **kwargs)
def FISTA_method1(xhat, forwg, gradg, proxh, eps=1e-15, niters=100):
logger.debug('Preparing for optimization...')
time_start = time.time()
# hyperparams
beta1 = 3 # >=1
beta2 = 0.4 # <1
# initialize opt vars
nu = xprev = xhat
tprev = 1
res_history = []
f_history = []
for kk in range(1,niters+1):
ll = 0
t = tprev*beta1
theta = 2/(kk+1)
y = (1-theta)*xprev + theta*nu
while True:
x = proxh(y-t*gradg(y) , t)
# Lipschitz/step-size Condition
ubound_gap = (forwg(y) + np.inner(gradg(y), x-y) + (1/(2*t))*sqeuclidean(x-y)) - forwg(x)
# logger.debug('k_{}|ls_{}>> t:{}, gap:{}, '.format(kk, ll, t, ubound_gap))
if ubound_gap >= 0:
break
ll+=1
t *= beta2
residual = np.linalg.norm(xprev-x)/np.linalg.norm(xprev)
res_history.append(residual)
if (kk%20)==0:
logger.debug('k_{}>> res:{}'.format(kk, residual))
f_history.append(forwg(x))
# if kk>1:
# assert(f_history[-1]<=f_history[-2])
if (residual <= eps):
break
nu = xprev + (1/theta)*(x-xprev)
xprev = x
return x
def FISTA_method2(xhat, forwg, gradg, proxh, eps=1e-15, niters=100):
warnings.warn("FISTA_method2 is unstable and should not be used")
logger.info('Preparing for optimization...')
time_start = time.time()
# hyperparams
beta1 = 1 # >1
beta2 = 0.5 # <1
# initialize opt vars
nuprev = xprev = np.random.rand(*xhat.shape)
tprev = 10
thetaprev = 1
res_history = []
f_history = []
for kk in range(1,niters+1):
ll = 0
t = tprev*beta1
while True:
# line search
theta = positive_root_2(t, tprev, thetaprev) if kk>1 else 1
y = (1-theta)*xprev + theta*nuprev
x = proxh(y-t*gradg(y) , t)
# Lipschitz/step-size Condition
ubound_gap = (forwg(y) + np.inner(gradg(y), x-y) + (1/(2*t))*sqeuclidean(x-y)) - forwg(x)
logger.debug('k_{}|ls_{}>> t:{}, gap:{}, '.format(kk, ll, t, ubound_gap))
if ubound_gap >= 0:
break
ll+=1
t *= beta2
residual = np.linalg.norm(xprev-x)/np.linalg.norm(xprev)
if (kk%20)==0:
logger.info('k_{}>> res:{}'.format(kk, residual))
res_history.append(residual)
f_history.append(forwg(x))
if (residual <= eps):
break
nu = xprev + (1/theta)*(x-xprev)
xprev = x
nuprev = nu
tprev = t
thetaprev = theta
# plt.plot(res_history)
# plt.figure()
# plt.plot(f_history)
# plt.show()
logger.debug(x)
return x
if __name__ == '__main__':
pass
# # huber test
# x = np.arange(-4, 4, 0.1)
# y = np.empty_like(x)
# yg = np.empty_like(x)
# for ii, xx in enumerate(x):
# y[ii] = huber(xx, 0.3)
# yg[ii] = grad_huber(xx, 0.3)
# plt.plot(x, y)
# plt.plot(x, yg)
# plt.show()
# # Optimization test
# logger.setLevel(logging.DEBUG)
# logger.addHandler(logging.StreamHandler(sys.stdout))
# xhat = np.zeros((10000,))
# x = optimize(xhat, lambda x: 0.5*sqeuclidean(x-xhat), lambda x: x-xhat, prox_0,)
# logger.debug(x)