From 6ee9942743b15887253aa0159dff039df86bb5bd Mon Sep 17 00:00:00 2001 From: Nikolai Kudasov Date: Wed, 13 Dec 2023 15:56:26 +0300 Subject: [PATCH] Refactor half of section 2.4 --- .../04-homotopies-and-equivalences.rzk.md | 442 ++++++++++++++++ .../04-homotopies-are-equivalences.rzk.md | 473 ------------------ .../iu-hott-seminar-2023-12-06.rzk.md | 36 -- 3 files changed, 442 insertions(+), 509 deletions(-) create mode 100644 src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md delete mode 100644 src/1-foundations/2-homotopy-type-theory/04-homotopies-are-equivalences.rzk.md diff --git a/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md b/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md new file mode 100644 index 0000000..e98a551 --- /dev/null +++ b/src/1-foundations/2-homotopy-type-theory/04-homotopies-and-equivalences.rzk.md @@ -0,0 +1,442 @@ +# 2.4 Homotopies and equivalences + +This is a literate Rzk file: + +```rzk +#lang rzk-1 +``` + +## Homotopies between functions + +!!! note "Definition 2.4.1." + Let $f, g : \prod_{(x:A)} P(x)$ be two sections of a type family $P : A \to U$. + A homotopy from $f$ to $g$ is a dependent function of type + + $$(f \sim g) :\equiv \prod_{(x:A)} (f(x) = g(x)).$$ + +```rzk +#def homotopy + ( A : U) + ( P : A → U) + ( f g : (x : A) → P x) + : U + := (x : A) → f x = g x +``` + +## Homotopies are equivalence relations + +!!! note "Lemma 2.4.2." + + Homotopy is an equivalence relation on each dependent function type $\prod_{(x:A)} P(x)$. + That is, we have elements of the types + + $$\prod_{f : \prod_{(x:A)} P(x)} (f \sim f)$$ + + $$\prod_{f, g : \prod_{(x:A)} P(x)} (f \sim g) \to (g \sim f)$$ + + $$\prod_{f, g, h : \prod_{(x:A)} P(x)} (f \sim g) \to (g \sim h) \to (f \sim h)$$ + +### Reflexivity + +```rzk +#def homotopy-refl + ( A : U) + ( P : A → U) + ( f : (x : A) → P x) + : homotopy A P f f + := \ x → refl +``` + +### Symmetry + +```rzk +#def homotopy-sym + ( A : U) + ( P : A → U) + ( f g : (x : A) → P x) + : homotopy A P f g → homotopy A P g f + := + \ hom x → + path-sym (P x) (f x) (g x) (hom x) +``` + +### Transitivity + +```rzk +#def homotopy-trans + ( A : U) + ( P : A → U) + ( f g h : (x : A) → P x) + : homotopy A P f g + → homotopy A P g h + → homotopy A P f h + := + \ hom-fg hom-gh x → + path-concat (P x) (f x) (g x) (h x) (hom-fg x) (hom-gh x) +``` + +## Naturality + +!!! note "Lemma 2.4.3." + + Suppose $H : f \sim g$ is a homotopy between functions $f, g: A \to B$ and let $p : x =_A y$. Then we have + + $$H(x) \cdot g(p) = f(p) \cdot H(y).$$ + +!!! tip + When dealing with paths, authors write $f(p)$ to mean $ap_f(p)$. + +```rzk +#def hom-naturality + ( A B : U) + ( f g : A → B) + ( H : homotopy A (\ _ → B) f g) + : ( x : A) + → ( y : A) + → ( p : x = y) + → path-concat B (f x) (g x) (g y) (H x) (ap A B g x y p) + = path-concat B (f x) (f y) (g y) (ap A B f x y p) (H y) + := + path-ind A + ( \ x' y' p' → + path-concat B (f x') (g x') (g y') (H x') (ap A B g x' y' p') + = path-concat B (f x') (f y') (g y') (ap A B f x' y' p') (H y')) + ( \ x' → path-sym -- H x' ∙ refl = H x' + ( f x' = g x') + ( H x') + ( path-concat B (f x') (g x') (g x') (H x') refl) + ( concat-refl B (f x') (g x') (H x')) -- H x' = H x' ∙ refl + ) +``` + +!!! note "Corollary 2.4.4." + + Let $H : f \sim id_A$ be a homotopy, with $f : A \to A$. Then, for any $x : A$ we have + + $$H(f(x)) = f(H(x)).$$ + + Here $f(x)$ denotes the ordinary application of $f$ to $x$, while $f(H(x))$ denotes $ap_f(H(x))$. + +Proof [`#!rzk homotopy-id-swap`](#define:homotopy-id-swap) is given in the end of the file. + +## Quasi-Inverses + +The traditional notion of isomorphism is poorly behaved for proof-relevant mathematics. Thus, it is given the name of quasi-inverse. + +!!! note "Definition 2.4.6." + + For a function $f : A → B$, + a __quasi-inverse__ of $f$ is a triple $(g, \alpha, \beta)$ consisting of + a function $g : B → A$ + and homotopies $\alpha : f \circ g \sim id_B$ + and $\beta : g \circ f \sim id_A$. + +```rzk +#def qinv + ( A B : U) + ( f : A → B) + : U + := + Σ ( g : B → A) + , prod + ( homotopy B (\ _ → B) (compose B A B f g) (id B)) + ( homotopy A (\ _ → A) (compose A B A g f) (id A)) +``` + +### Examples + +!!! example "Example 2.4.7. Identity quasi-inverse" + + The identity function $id_A : A \to A$ has a quasi-inverse given by $id_A$ itself, + together with homotopies defined by $\alpha(y) :\equiv \mathsf{refl}_y$ and $\beta(x) :\equiv \mathsf{refl}_x$. + +```rzk +#def qinv-id + ( A : U) + : qinv A A (id A) + := + ( id A + , ( \ y → refl_{y} + , \ x → refl_{x})) +``` + +!!! example "Example 2.4.8. Quasi-inverse for path concatenation" + + For any $p : x =_A y$ and $z : A$, + the functions $(p \cdot –) : (y =_A z) \to (x =_A z)$ + and $(– \cdot p) : (z =_A x) \to (z =_A y)$ + have quasi-inverses given by $(p^{−1} \cdot –)$ and $(– \cdot p^{−1})$, respectively. + +#### Quasi-inverse of the concatenation from the right side + +!!! tip "Change of variables in the code" + + Note the change of variables: $p \mapsto q, x \mapsto y, y \mapsto z, z \mapsto x$. That is, the code corrsesponds to the statement that for any $q : y =_A z$ and $x : A$, the function $(– \cdot q) : (x =_A y) \to (x =_A z)$ have quasi-inverse given by $(– \cdot q^{−1})$, respectively. + +```rzk title="Definition of right concatenation as a function, and its inverse" +#def right-concat + ( A : U) + ( x y z : A) + ( q : y = z) + : ( x = y) → (x = z) + := \ p → path-concat A x y z p q + +#def right-concat-inv + ( A : U) + ( x y z : A) + ( q : y = z) + : ( x = z) → (x = y) + := right-concat A x z y (path-sym A y z q) +``` + +```rzk title="Proofs that both compositions are homotopical to identity" +#def right-concat-right-inv-remove-refl + ( A : U) + ( x y z : A) + ( p : x = y) + : ( q : y = z) + → right-concat-inv A x y z q (right-concat A x y z q p) -- (p ∙ q) ∙ q⁻¹ + = p + := + path-ind A + ( \ x' y' p' → + ( q : y' = z) → right-concat-inv A x' y' z q (right-concat A x' y' z q p') = p') + ( \ x' → inverse-r A x' z) + ( x) + ( y) + ( p) + +#def right-concat-left-inv-remove-refl + ( A : U) + ( x y z : A) + ( r : x = z) + : ( q : y = z) + → right-concat A x y z q (right-concat-inv A x y z q r) -- (r ∙ q⁻¹) ∙ q + = r + := + path-ind A + ( \ x' z' r' → + ( q : y = z') → right-concat A x' y z' q (right-concat-inv A x' y z' q r') = r') + ( \ x' → inverse-l A y x') + ( x) + ( z) + ( r) +``` + +```rzk title="Proof for quasi-inverse of right concatenation" +#def right-concat-inv-is-qinv-for-right-concat + ( A : U) + ( x y z : A) + ( q : y = z) + : qinv (x = y) (x = z) (right-concat A x y z q) + := + ( right-concat-inv A x y z q + , ( \ (r : x = z) → right-concat-left-inv-remove-refl A x y z r q + , \ (p : x = y) → right-concat-right-inv-remove-refl A x y z p q)) +``` + + +## Equivalences + +An improved notion, [`isequiv`](#define:isequiv), has the following properties: + +1. For each $f : A \to B$ there is a function $\mathsf{qinv}(f) \to \mathsf{isequiv}(f)$ +2. Similarly, for each $f$ we have $\mathsf{isequiv}(f) \to \mathsf{qinv}(f)$; thus the two are logically equivalent. +3. For any two inhabitants $e_1, e_2 : \mathsf{isequiv}(f)$, we have $e_1 = e_2$. + +One of numerous, but equivalent ways to define `isequiv`: + +!!! note "Definition 2.4.10." + + $$\mathsf{isequiv}(f) :\equiv (\sum_{(g:B \to A)} (f \circ g \sim id_B)) \times (\sum_{(h:B \to A)} (h \circ f \sim id_A)).$$ + +```rzk +#def isequiv + ( A B : U) + ( f : A → B) + : U + := + prod + ( Σ ( g : B → A) , homotopy B (\ _ → B) (compose B A B f g) (id B)) + ( Σ ( h : B → A) , homotopy A (\ _ → A) (compose A B A h f) (id A)) +``` + +1. For the $\mathsf{qinv}(f) \to \mathsf{equiv}(f)$ direction, $g$ can play the role of both $g$ and $h$, i.e. we take $(g, \alpha, \beta)$ to $(g, \alpha, g, \beta)$. + +```rzk +#def qinv-to-isequiv + ( A B : U) + ( f : A → B) + : qinv A B f → isequiv A B f + := \ (g , (α , β)) → ((g , α) , (g , β)) +``` + +2. For the other direction, we are given $(g, \alpha, h, \beta)$. Notice that $h \circ f \circ g \sim_{\alpha} h$ and $h \circ f \circ g \sim_{\beta} g$. Let $\gamma$ be the composite homotopy + + $$g \sim_{\beta^{-1}} h \circ f \circ g \sim_{\alpha} h,$$ + + meaning $\gamma(x) :\equiv \beta(g(x))^{-1} \cdot h(\alpha(x))$. Now define $\beta'(x) :\equiv \gamma(f(x)) \cdot \beta(x)$. Then $(g, \alpha, \beta) : \mathsf{qinv}(f)'$. + +```rzk +#def isequiv-to-qinv + ( A B : U) + ( f : A → B) + : isequiv A B f → qinv A B f + := + \ ((g , α) , (h , β)) → + ( g + , ( α + , \ x → + -- g (f x) = h (f (g (f x))) = h (f x) = x + path-concat A -- g (f x) = id x + ( compose A B A g f x) + ( compose A B A h f x) + ( id A x) + ( path-concat A -- g (f x) = h (f x) + ( g (f x)) + ( h (f (g (f x)))) + ( h (f x)) + ( path-sym A -- g (f x) = (h . f . g) (f x) + ( compose A B A h f (g (f x))) + ( id A (g (f x))) + ( β (g (f x)))) + ( ap B A h -- (h . f . g) (f x) = h (f x) + ( compose B A B f g (f x)) + ( id B (f x)) + ( α (f x)))) + ( β x))) -- h (f x) = id x +``` + +3. Proof of the third property requires identifying the identity types of cartesian products and dependent pair types, which are discussed in Sections 2.6 and 2.7. + +## Equivalence of types +!!! lemma "Definition 2.4.11." + An equivalence from type $A$ to type $B$ is defined to be a function $f : A \to B$ together with an inhabitant of $\mathsf{equiv}(f)$. + + $$(A \simeq B) :\equiv \Sigma_{(f:A \to B)} \mathsf{equiv}(f).$$ + +!!! lemma "Note" + If we have a function $f : A \to B$ and we know that $e : \mathsf{equiv}(f)$, we may write $f : A \simeq B$, rather than $(f, e)$. + +```rzk +#def equivalence + ( A B : U) + : U + := Σ (f : A → B) , isequiv A B f +``` + +## Type equivalences are equivalence relations +!!! lemma "Lemma 2.4.12." + Type equivalence is an equivalence relation on $U$. More specifically: + + 1. For any $A$, the identity function $id_A$ is an equivalence; hence $A \simeq A$. + 2. For any $f : A \simeq B$, we have an equivalence $f^{-1} : B \simeq A$. + 3. For any $f : A \simeq B$ and $g : B \simeq C$, we have $g \circ f : A \simeq C$. + +1. Reflexivity +```rzk +#def equivalence-refl + ( A : U) + : equivalence A A + := (id A , ((id A , \ x → refl) , (id A , \ x → refl))) +``` + +2. Symmetry +```rzk +#def equivalence-sym + ( A B : U) + : equivalence A B → equivalence B A + := \ (f , isequiv-f) → + ( first (isequiv-to-qinv A B f isequiv-f) + , qinv-to-isequiv + B + A + ( first (isequiv-to-qinv A B f isequiv-f)) + ( f + , ( second (second (isequiv-to-qinv A B f isequiv-f)) + , first (second (isequiv-to-qinv A B f isequiv-f)) + ) + ) + ) +``` + +3. Transitivity +```rzk +-- #def equivalence-trans +-- (A B C : U) +-- : equivalence A B → equivalence B C → equivalence A C +-- := \ (f, isequiv-f) (g, isequiv-g) → +``` + + + +``` title="Proof for corollary 2.4.4. Homotopy with id" +lemma 2.4.3 : H(x) • g (p) = f (p) • H y + +Substitutions: +x → f x +y → x +g → id +p → H x + +Result of application of lemma with the corresponding values: +H(f x) • id (H x) = f (H x) • H x + + +By right-concatenating (H x)⁻¹ to the both sides, we have +H(f x) = H(f x) • id (H x) • (H x)⁻¹ = f (H x) • H x • (H x)⁻¹ = f (H x) +``` + + +```rzk +#def homotopy-id-swap + ( A : U) + ( f : A → A) + ( H : homotopy A (\ _ → A) f (id A)) + ( x : A) + : H (f x) = ap A A f (f x) (id A x) (H x) + := 3-path-concat + ( f (f x) = (f x)) -- type of points + -- 1st point: H (f x) + ( H (f x)) + -- 2nd point: (H (f x) • (H x)) • (H x)⁻¹ + ( path-concat A (f (f x)) x (f x) (path-concat A (f (f x)) (f x) x (H (f x)) (H x)) (path-sym A (f x) x (H x))) + -- 3rd point: (f (H x) • (H x)) • (H x)⁻¹ + ( path-concat A (f (f x)) x (f x) (path-concat A (f (f x)) (f x) x (ap A A f (f x) x (H x)) (H x)) (path-sym A (f x) x (H x))) + -- 4th point: f (H x) + ( ap A A f (f x) x (H x)) + -- proof that H (f x) = (H (f x) • H x) • (H x)⁻¹ + ( path-sym + ( f (f x) = f x) + ( path-concat A (f (f x)) x (f x) (path-concat A (f (f x)) (f x) x (H (f x)) (H x)) (path-sym A (f x) x (H x))) + ( H (f x)) + ( right-concat-right-inv-remove-refl A (f (f x)) (f x) x (H (f x)) (H x))) + -- proof that (H (f x) • H x) • (H x)⁻¹ = (f (H x) • (H x)) • (H x)⁻¹ + ( ap + ( f (f x) = x) -- (type of domain) + ( f (f x) = f x) -- (type of codomain) + ( \ p' → path-concat A (f (f x)) x (f x) p' (path-sym A (f x) x (H x))) + -- function-to-apply: whiskering by (Hx)⁻¹, a.k.a. cancel out H x + ( path-concat A (f (f x)) (f x) x (H (f x)) (H x)) -- left point in path below + ( path-concat A (f (f x)) (f x) x (ap A A f (f x) x (H x)) (H x)) -- right point in path below + ( path-concat + ( f (f x) = x) + -- (H (f x) • H x) + ( path-concat A (f (f x)) ((\ (z : A) → z) (f x)) ((\ (z : A) → z) x) (H (f x)) (H x)) + -- (H (f x) • id (H x)) + ( path-concat A (f (f x)) ((\ (z : A) → z) (f x)) ((\ (z : A) → z) x) (H (f x)) (ap A A (\ (z : A) → z) (f x) x (H x))) + -- f (H x) • (H x) + ( path-concat A (f (f x)) (f x) ((\ (z : A) → z) x) (ap A A f (f x) x (H x)) (H x)) + -- (H (f x) • H x) = (H (f x) • id (H x)) + ( ap + ( f x = x) -- domain + ( ( f (f x)) = x) -- codomain + ( \ p' → path-concat A (f (f x)) ((\ (z : A) → z) (f x)) ((\ (z : A) → z) x) (H (f x)) p') -- action of concatenation + ( H x) -- left point in path + ( ap A A (\ z → z) (f x) x (H x)) -- right point in path + ( path-sym (f x = x) (ap A A (\ z → z) (f x) x (H x)) (H x) (ap-id A (f x) x (H x)))) + -- (H (f x) • id (H x)) = f (H x) • (H x) + ( hom-naturality A A f (\ z → z) H (f x) x (H x)))) + -- proof that (f (H x) • (H x)) • (H x)⁻¹ = f (H x) + ( right-concat-right-inv-remove-refl A (f (f x)) (f x) x (ap A A f (f x) (id A x) (H x)) (H x)) +``` diff --git a/src/1-foundations/2-homotopy-type-theory/04-homotopies-are-equivalences.rzk.md b/src/1-foundations/2-homotopy-type-theory/04-homotopies-are-equivalences.rzk.md deleted file mode 100644 index a53ddc9..0000000 --- a/src/1-foundations/2-homotopy-type-theory/04-homotopies-are-equivalences.rzk.md +++ /dev/null @@ -1,473 +0,0 @@ -# 2.4 Homotopies are equivalences - -This is a literate Rzk file: - -```rzk -#lang rzk-1 -``` - -## Homotopies between functions -!!! lemma "Definition 2.4.1." - Let $f, g : \Pi_{(x:A)} P(x)$ be two sections of a type family $P : A \to U$. A homotopy from $f$ to $g$ is a dependent function of type - - $$(f \sim g) :\equiv \Pi_{(x:A)} (f(x) = g(x)).$$ - -```rzk -#def homotopy - ( A : U) - ( P : A → U) - ( f g : (x : A) → P x) - : U - := (x : A) → f x = g x -``` - -## Homotopies are equivalence relations -!!! lemma "Lemma 2.4.2." - Homotopy is an equivalence relation on each dependent function type $\Pi_{(x:A) P(x)}$. That is, we have elements of the types - - $$\Pi_{f:\Pi_{(x:A)} P(x)} (f \sim f)$$ - - $$\Pi_{f,g:\Pi_{(x:A)} P(x)} (f \sim g) \to (g \sim f)$$ - - $$\Pi_{f,g,h:\Pi_{(x:A)} P(x)} (f \sim g) \to (g \sim h) \to (f \sim h)$$ - -1. Reflexivity: -```rzk -#def homotopy-refl - ( A : U) - ( P : A → U) - ( f : (x : A) → P x) - : homotopy A P f f - := \ x → refl -``` - -2. Symmetry: -```rzk -#def homotopy-sym: - ( A : U) - ( P : A → U) - ( f g : (x : A) → P x) - : homotopy A P f g → homotopy A P g f - := \ hom → \ x → path-sym (P x) (f x) (g x) (hom x) -``` - -3. Transitivity: -```rzk -#def homotopy-trans - ( A : U) - ( P : A → U) - ( f g h : (x : A) → P x) - : homotopy A P f g → homotopy A P g h → homotopy A P f h - := \ hom-fg → \ hom-gh → \ x → path-concat (P x) (f x) (g x) (h x) (hom-fg x) (hom-gh x) -``` - -## Naturality -!!! lemma "Lemma 2.4.3." - Suppose $H : f \sim g$ is a homotopy between functions $f, g: A \to B$ and let $p : x =_A y$. Then we have - - $$H(x) \cdot g(p) = f(p) \cdot H(y).$$ -!!! note - When dealing with paths, authors write $f(p)$ to mean $ap_f(p)$ - -```rzk -#def hom-naturality - ( A B : U) - ( f g : A → B) - ( H : homotopy A (\ _ → B) f g) - ( x y : A) - ( p : x = y) - : path-concat B (f x) (g x) (g y) (H x) (ap A B g x y p) - = path-concat B (f x) (f y) (g y) (ap A B f x y p) (H y) - := path-ind - A - ( \ x' y' p' → path-concat B (f x') (g x') (g y') (H x') (ap A B g x' y' p') - = path-concat B (f x') (f y') (g y') (ap A B f x' y' p') (H y') - ) - -- ? : path-concat B (f x') (g x') (g x') (H x') (ap A B g x' x' refl) = - -- path-concat B (f x') (f x') (g x') (ap A B f x' x' refl) (H x') === - -- path-concat B (f x') (g x') (g x') (H x') refl = - -- path-concat B (f x') (f x') (g x') refl (H x') - -- Both sides of the equality are equal to (H x'), we can use transitivity - ( \ x' → path-concat -- lhs = rhs - ( f x' = g x') - ( path-concat B (f x') (g x') (g x') (H x') refl) -- lhs - ( H x') - ( path-concat B (f x') (f x') (g x') refl (H x')) -- rhs - ( path-sym -- lhs = H x' - ( f x' = g x') - ( H x') - ( path-concat B (f x') (g x') (g x') (H x') refl) - ( concat-refl B (f x') (g x') (H x')) -- H x' = lhs - ) - ( refl-concat B (f x') (g x') (H x')) -- H x' = rhs - ) - x y p -``` - -!!! lemma "Corollary 2.4.4." - Let $H : f \sim id_A$ be a homotopy, with $f : A \to A$. Then, for any $x : A$ we have - - $$H(f(x)) = f(H(x)).$$ - - Here $f(x)$ denotes the ordinary application of $f$ to $x$, while $f(H(x))$ denotes $ap_f(H(x))$. - -Proof is given in the end of the file. -```rzk --- #def homotopy-id-swap --- (A : U) --- (f : A → A) --- (H : homotopy A (\ _ → A) f (id A)) --- (x : A) --- : H (f x) = ap A A f (f x) (id A x) (H x) --- := -``` - -## Quasi-Inverses -The traditional notion of isomorphism is poorly behaved for proof-relevant mathematics. Thus, it is given the name of quasi-inverse. -!!! lemma "Definition 2.4.6." - For a function $f : A → B$, a quasi-inverse of $f$ is a triple $(g, \alpha, \beta)$ consisting of a function $g : B → A$ and homotopies $\alpha : f \circ g \sim id_B$ and $\beta : g \circ f \sim id_A$. - -```rzk -#def qinv - ( A B : U) - ( f : A → B) - : U - := Σ (g : B → A) - , prod - ( homotopy B (\ _ → B) (compose B A B f g) (id B)) - ( homotopy A (\ _ → A) (compose A B A g f) (id A)) -``` - -### Examples -!!! note "Example 2.4.7. Identity quasi-inverse" - The identity function $id_A : A \to A$ has a quasi-inverse given by $id_A$ itself, together with homotopies defined by $\alpha(y) :\equiv \mathsf{refl}_y$ and $\beta(x) :\equiv \mathsf{refl}_x$. - -```rzk -#def qinv-id - ( A : U) - : qinv A A (id A) - := (id A - , ( \ x → refl - , \ x → refl)) -``` - -!!! note "Example 2.4.8. Quasi-inverse for path concatenation" - For any $p : x =_A y$ and $z : A$, the functions $(p \cdot –) : (y =_A z) \to (x =_A z)$ and $(– \cdot p) : (z =_A x) \to (z =_A y)$ have quasi-inverses given by $(p^{−1} \cdot –)$ and $(– \cdot p^{−1})$, respectively. - -**Quasi-inverse of the concatenation from the right side.** - -!!! note "Change of variables in the code" - Note the change of variables: $p \mapsto q, x \mapsto y, y \mapsto z, z \mapsto x$. That is, the code corrsesponds to the statement that for any $q : y =_A z$ and $x : A$, the function $(– \cdot q) : (x =_A y) \to (x =_A z)$ have quasi-inverse given by $(– \cdot q^{−1})$, respectively. - - -```rzk title="Definition of right concatenation as a function, and its inverse" -#def right-concat - ( A : U) - ( x y z : A) - ( q : y = z) - : ( x = y) → (x = z) - := \ p → path-concat A x y z p q - - -#def right-concat-inv - ( A : U) - ( x y z : A) - ( q : y = z) - : ( x = z) → (x = y) - := right-concat A x z y (path-sym A y z q) - -``` - -```rzk title="Proofs that both compositions are homotopical to identity" -#def right-concat-right-inv-remove-refl - ( A : U) - ( x y z : A) - ( p : x = y) - ( q : y = z) - : ( compose (x = y) (x = z) (x = y) (right-concat-inv A x y z q) (right-concat A x y z q)) p = p - := 3-path-concat - ( x = y) -- type of things that are connected my paths - -- 1st point: (p • q) • q⁻¹ - ( compose (x = y) (x = z) (x = y) (right-concat-inv A x y z q) (right-concat A x y z q) p) - -- 2nd point: p • (q • q⁻¹) - ( path-concat A x y y p (path-concat A y z y q (path-sym A y z q))) - -- 3rd point: p • refl - ( path-concat A x y y p refl) - -- 4th point: p - p - -- 1st proof: (p • q) • q⁻¹ = p • (q • q⁻¹) - ( concat-assoc-2 A x y z y - p - q - ( path-sym A y z q) - ) - -- 2nd proof: p • (q • q⁻¹) = p • refl - ( ap - ( y = y) - ( x = y) - ( \ p' → (path-concat A x y y p p')) - ( path-concat A y z y q (path-sym A y z q)) - refl - ( inverse-r A y z q) - ) - -- 3rd proof: p • refl = p - ( path-sym (x = y) p (path-concat A x y y p refl) (concat-refl A x y p)) - - -#def right-concat-left-inv-remove-refl - ( A : U) - ( x y z : A) - ( r : x = z) - ( q : y = z) - : ( compose (x = z) (x = y) (x = z) (right-concat A x y z q) (right-concat-inv A x y z q)) r = r - := 3-path-concat - ( x = z) -- type of things that are connected my paths - -- 1st point: (r • q⁻¹) • q - ( compose (x = z) (x = y) (x = z) (right-concat A x y z q) (right-concat-inv A x y z q) r) - -- 2nd point: r • (q⁻¹ • q) - ( path-concat A x z z r (path-concat A z y z (path-sym A y z q) q)) - -- 3rd point: r • refl - ( path-concat A x z z r refl) - -- 4th point: p - r - -- 1st proof: (r • q⁻¹) • q = r • (q⁻¹ • q) - ( concat-assoc-2 A x z y z - r - ( path-sym A y z q) - q - ) - -- 2nd proof: r • (q⁻¹ • q) = r • refl - ( ap - ( z = z) - ( x = z) - ( \ p' → (path-concat A x z z r p')) - ( path-concat A z y z (path-sym A y z q) q) - refl - ( inverse-l A y z q) - ) - -- 3rd proof: r • refl = r - ( path-sym (x = z) r (path-concat A x z z r refl) (concat-refl A x z r)) -``` - -```rzk title="Proof for quasi-inverse of right concatenation" -#def right-concat-inv-is-qinv-for-right-concat - ( A : U) - ( x y z : A) - ( q : y = z) - : qinv (x = y) (x = z) (right-concat A x y z q) - := (right-concat-inv A x y z q - , ( - \ (r : x = z) → right-concat-left-inv-remove-refl A x y z r q - , \ (p : x = y) → right-concat-right-inv-remove-refl A x y z p q - )) -``` - - -## Equivalences -An improved notion, `isequiv`, has the following properties: - -1. For each $f : A \to B$ there is a function $qinv(f) \to isequiv(f)$ -2. Similarly, for each $f$ we have $isequiv(f) \to qinv(f)$; thus the two are logically equivalent. -3. For any two inhabitants $e_1, e_2 : isequiv(f)$, we have $e_1 = e_2$. - -One of numerous, but equivalent ways to define `isequiv`: -!!! lemma "Definition 2.4.10." - $$isequiv(f) :\equiv (\Sigma_{(g:B \to A)} (f \circ g \sim id_B)) \times (\Sigma_{(h:B \to A)} (h \circ f \sim id_A)).$$ - -```rzk -#def isequiv - ( A B : U) - ( f : A → B) - : U - := prod - ( Σ ( g : B → A) , homotopy B (\ _ → B) (compose B A B f g) (id B)) - ( Σ ( h : B → A) , homotopy A (\ _ → A) (compose A B A h f) (id A)) -``` - -1. For the $qinv(f) \to isequiv(f)$ direction, $g$ can play the role of both $g$ and $h$, i.e. we take $(g, \alpha, \beta)$ to $(g, \alpha, g, \beta)$. - -```rzk -#def qinv-to-isequiv - ( A B : U) - ( f : A → B) - : ( qinv A B f) → (isequiv A B f) - := \ (g , (α , β)) → ((g , α) , (g , β)) -``` - -2. For the other direction, we are given $(g, \alpha, h, \beta)$. Notice that $h \circ f \circ g \sim_{\alpha} h$ and $h \circ f \circ g \sim_{\beta} g$. Let $\gamma$ be the composite homotopy - -$$g \sim_{\beta^{-1}} h \circ f \circ g \sim_{\alpha} h,$$ - -meaning $\gamma(x) :\equiv \beta(g(x))^{-1} \cdot h(\alpha(x))$. Now define $\beta'(x) :\equiv \gamma(f(x)) \cdot \beta(x)$. Then $(g, \alpha, \beta) : qinv(f)'$. - -```rzk -#def isequiv-to-qinv - ( A B : U) - ( f : A → B) - : ( isequiv A B f) → (qinv A B f) - := \ ((g , α) , (h , β)) → - ( g - , ( α - , \ x → path-concat -- g (f x) = id x - A - ( compose A B A g f x) - ( compose A B A h f x) - ( id A x) - ( path-concat -- g (f x) = h (f x) - A - ( g (f x)) - ( h (f (g (f x)))) - ( h (f x)) - ( path-sym -- g (f x) = (h . f . g) (f x) - A - ( compose A B A h f (g (f x))) - ( id A (g (f x))) - ( β (g (f x))) - ) - ( ap -- (h . f . g) (f x) = h (f x) - B - A - h - ( compose B A B f g (f x)) - ( id B (f x)) - ( α (f x)) - ) - ) - ( β x) -- h (f x) = id x - ) - ) -``` - -3. Proof of the third property requires identifying the identity types of cartesian products and dependent pair types, which are discussed in Sections 2.6 and 2.7. - -## Equivalence of types -!!! lemma "Definition 2.4.11." - An equivalence from type $A$ to type $B$ is defined to be a function $f : A \to B$ together with an inhabitant of $isequiv(f)$. - - $$(A \simeq B) :\equiv \Sigma_{(f:A \to B)} isequiv(f).$$ - -!!! lemma "Note" - If we have a function $f : A \to B$ and we know that $e : isequiv(f)$, we may write $f : A \simeq B$, rather than $(f, e)$. - -```rzk -#def equivalence - ( A B : U) - : U - := Σ (f : A → B) , isequiv A B f -``` - -## Type equivalences are equivalence relations -!!! lemma "Lemma 2.4.12." - Type equivalence is an equivalence relation on $U$. More specifically: - - 1. For any $A$, the identity function $id_A$ is an equivalence; hence $A \simeq A$. - 2. For any $f : A \simeq B$, we have an equivalence $f^{-1} : B \simeq A$. - 3. For any $f : A \simeq B$ and $g : B \simeq C$, we have $g \circ f : A \simeq C$. - -1. Reflexivity -```rzk -#def equivalence-refl - ( A : U) - : equivalence A A - := (id A , ((id A , \ x → refl) , (id A , \ x → refl))) -``` - -2. Symmetry -```rzk -#def equivalence-sym - ( A B : U) - : equivalence A B → equivalence B A - := \ (f , isequiv-f) → - ( first (isequiv-to-qinv A B f isequiv-f) - , qinv-to-isequiv - B - A - ( first (isequiv-to-qinv A B f isequiv-f)) - ( f - , ( second (second (isequiv-to-qinv A B f isequiv-f)) - , first (second (isequiv-to-qinv A B f isequiv-f)) - ) - ) - ) -``` - -3. Transitivity -```rzk --- #def equivalence-trans --- (A B C : U) --- : equivalence A B → equivalence B C → equivalence A C --- := \ (f, isequiv-f) (g, isequiv-g) → -``` - - - -``` title="Proof for corollary 2.4.4. Homotopy with id" -lemma 2.4.3 : H(x) • g (p) = f (p) • H y - -Substitutions: -x → f x -y → x -g → id -p → H x - -Result of application of lemma with the corresponding values: -H(f x) • id (H x) = f (H x) • H x - - -By right-concatenating (H x)⁻¹ to the both sides, we have -H(f x) = H(f x) • id (H x) • (H x)⁻¹ = f (H x) • H x • (H x)⁻¹ = f (H x) -``` - - -```rzk -#def homotopy-id-swap - ( A : U) - ( f : A → A) - ( H : homotopy A (\ _ → A) f (id A)) - ( x : A) - : H (f x) = ap A A f (f x) (id A x) (H x) - := 3-path-concat - ( f (f x) = (f x)) -- type of points - -- 1st point: H (f x) - ( H (f x)) - -- 2nd point: (H (f x) • (H x)) • (H x)⁻¹ - ( path-concat A (f (f x)) x (f x) (path-concat A (f (f x)) (f x) x (H (f x)) (H x)) (path-sym A (f x) x (H x))) - -- 3rd point: (f (H x) • (H x)) • (H x)⁻¹ - ( path-concat A (f (f x)) x (f x) (path-concat A (f (f x)) (f x) x (ap A A f (f x) x (H x)) (H x)) (path-sym A (f x) x (H x))) - -- 4th point: f (H x) - ( ap A A f (f x) x (H x)) - -- proof that H (f x) = (H (f x) • H x) • (H x)⁻¹ - ( path-sym - ( f (f x) = f x) - ( path-concat A (f (f x)) x (f x) (path-concat A (f (f x)) (f x) x (H (f x)) (H x)) (path-sym A (f x) x (H x))) - ( H (f x)) - ( right-concat-right-inv-remove-refl A (f (f x)) (f x) x (H (f x)) (H x))) - -- proof that (H (f x) • H x) • (H x)⁻¹ = (f (H x) • (H x)) • (H x)⁻¹ - ( ap - ( f (f x) = x) -- (type of domain) - ( f (f x) = f x) -- (type of codomain) - ( \ p' → path-concat A (f (f x)) x (f x) p' (path-sym A (f x) x (H x))) - -- function-to-apply: whiskering by (Hx)⁻¹, a.k.a. cancel out H x - ( path-concat A (f (f x)) (f x) x (H (f x)) (H x)) -- left point in path below - ( path-concat A (f (f x)) (f x) x (ap A A f (f x) x (H x)) (H x)) -- right point in path below - ( path-concat - ( f (f x) = x) - -- (H (f x) • H x) - ( path-concat A (f (f x)) ((\ (z : A) → z) (f x)) ((\ (z : A) → z) x) (H (f x)) (H x)) - -- (H (f x) • id (H x)) - ( path-concat A (f (f x)) ((\ (z : A) → z) (f x)) ((\ (z : A) → z) x) (H (f x)) (ap A A (\ (z : A) → z) (f x) x (H x))) - -- f (H x) • (H x) - ( path-concat A (f (f x)) (f x) ((\ (z : A) → z) x) (ap A A f (f x) x (H x)) (H x)) - -- (H (f x) • H x) = (H (f x) • id (H x)) - ( ap - ( f x = x) -- domain - ( ( f (f x)) = x) -- codomain - ( \ p' → path-concat A (f (f x)) ((\ (z : A) → z) (f x)) ((\ (z : A) → z) x) (H (f x)) p') -- action of concatenation - ( H x) -- left point in path - ( ap A A (\ z → z) (f x) x (H x)) -- right point in path - ( path-sym (f x = x) (ap A A (\ z → z) (f x) x (H x)) (H x) (ap-id A (f x) x (H x)))) - -- (H (f x) • id (H x)) = f (H x) • (H x) - ( hom-naturality A A f (\ z → z) H (f x) x (H x)))) - -- proof that (f (H x) • (H x)) • (H x)⁻¹ = f (H x) - ( right-concat-right-inv-remove-refl A (f (f x)) (f x) x (ap A A f (f x) (id A x) (H x)) (H x)) -``` \ No newline at end of file diff --git a/src/1-foundations/iu-hott-seminar-2023-12-06.rzk.md b/src/1-foundations/iu-hott-seminar-2023-12-06.rzk.md index e8d0ad3..d78b03e 100644 --- a/src/1-foundations/iu-hott-seminar-2023-12-06.rzk.md +++ b/src/1-foundations/iu-hott-seminar-2023-12-06.rzk.md @@ -6,42 +6,6 @@ # Sets and logic in HoTT -```rzk -#define is-set - ( A : U) - : U - := - ( x : A) - → ( y : A) - → ( p : x = y) - → ( q : x = y) - → p = q -``` - -```rzk -#define is-set-Unit - : is-set Unit - := - \ x y p q → - path-ind Unit - ( \ x' y' p' → p' = q) - ( \ x' → - path-ind Unit - ( \ x'' y' q' → refl_{x''} = q') - ( \ x'' → refl) - x y q - ) - x y p -``` - -```rzk title="HoTT Book, Definition 2.4.1" -#define homotopy - ( A : U) - ( B : A → U) - ( f g : (a : A) → B a) - : U - := (x : A) → f x = g x -``` ```rzk title="HoTT Book, Definition 2.4.10" #define is-equiv