diff --git a/src/simplicial-hott/09-yoneda.rzk.md b/src/simplicial-hott/09-yoneda.rzk.md index f1796b8..ec1c682 100644 --- a/src/simplicial-hott/09-yoneda.rzk.md +++ b/src/simplicial-hott/09-yoneda.rzk.md @@ -896,10 +896,11 @@ Initial objects map to initial objects by equivalences. ```rzk #def is-inital-equiv-is-initial uses (extext) - (A B : U) - (e : Equiv A B) - (a : A) - (is-initial-a : is-initial A a) : + ( A B : U) + ( e : Equiv A B) + ( a : A) + ( is-initial-a : is-initial A a) + : is-initial B (first e a) := \ b → @@ -1139,10 +1140,11 @@ Final objects map to final objects by equivalences. ```rzk #def is-final-equiv-is-final uses (extext) - (A B : U) - (e : Equiv A B) - (a : A) - (is-final-a : is-final A a) : + ( A B : U) + ( e : Equiv A B) + ( a : A) + ( is-final-a : is-final A a) + : is-final B (first e a) := \ b → @@ -1419,16 +1421,16 @@ condition a name. ( A) ( first is-rep-C) ( C) - (equiv-for-is-representable-family A C is-rep-C)) + ( equiv-for-is-representable-family A C is-rep-C)) , is-inital-equiv-is-initial ( coslice A (first is-rep-C)) - ( Σ (x : A) , (C x)) + ( Σ ( x : A) , (C x)) ( total-equiv-family-of-equiv ( A) - (\ x → hom A (first is-rep-C) x) + ( \ x → hom A (first is-rep-C) x) ( C) ( second is-rep-C)) - ( (first is-rep-C, id-hom A (first is-rep-C))) + ( ( first is-rep-C , id-hom A (first is-rep-C))) ( is-initial-id-hom-is-segal A is-segal-A (first is-rep-C))) #def is-representable-family-has-initial-tot @@ -1437,7 +1439,7 @@ condition a name. ( C : A → U) ( is-covariant-C : is-covariant A C) ( has-initial-tot-A : has-initial-tot A C) - : (is-representable-family A C) + : ( is-representable-family A C) := ( first(first has-initial-tot-A) , \ b → @@ -1450,7 +1452,7 @@ condition a name. ( second(first has-initial-tot-A)) ( b)) , is-equiv-is-contr-map - ( hom A ( first(first has-initial-tot-A)) b) + ( hom A (first(first has-initial-tot-A)) b) ( C b) ( yon ( A) @@ -1462,9 +1464,9 @@ condition a name. ( b)) ( \ v → is-contr-equiv-is-contr - ( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b, v)) + ( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b , v)) ( fib - ( hom A ( first(first has-initial-tot-A)) b) + ( hom A (first(first has-initial-tot-A)) b) ( C b) ( yon ( A) @@ -1476,8 +1478,8 @@ condition a name. ( b)) ( v)) ( equiv-comp - ( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b, v)) - ( Σ (f : hom A (first(first has-initial-tot-A)) b) + ( hom (Σ (a : A) , (C a)) (first has-initial-tot-A) (b , v)) + ( Σ ( f : hom A (first(first has-initial-tot-A)) b) , dhom ( A) ( first(first has-initial-tot-A)) @@ -1552,7 +1554,7 @@ condition a name. ( is-covariant-C) ( second(first has-initial-tot-A)) ( v))))) - ( second has-initial-tot-A (b, v))))) + ( second has-initial-tot-A (b , v))))) ``` ```rzk title="RS17, Proposition 9.10" @@ -1577,3 +1579,4 @@ condition a name. ( is-covariant-C) ( has-initial-tot-A)) ``` +