diff --git a/src/simplicial-hott/04-right-orthogonal.rzk.md b/src/simplicial-hott/04-right-orthogonal.rzk.md index 8b9f3e20..9cfc4cb6 100644 --- a/src/simplicial-hott/04-right-orthogonal.rzk.md +++ b/src/simplicial-hott/04-right-orthogonal.rzk.md @@ -1060,6 +1060,108 @@ of the restriction map `(ψ → A) → (ϕ → A)`. #end has-unique-extensions ``` +### Function types into fiberwise local families are local + +We prove that if $A$ is a type and $C : A → U$ is such that every fiber $C (x)$ +is local with respect to a subshape inclusion, then so is $(x : X) → A (x)$. +This generalizes the proof of (RS17, Corollary 5.6). + +```rzk +#def subshape-restriction + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A : U) + : ( ψ → A) → (ϕ → A) + := \ f t → f t + +#def is-local-function-type-fiberwise-is-local uses (funext) + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A : U) + ( C : A → U) + ( fiberwise-is-local-C : (x : A) → (is-local-type I ψ ϕ (C x))) + : is-local-type I ψ ϕ ((x : A) → C x) + := + is-equiv-triple-comp + ( ψ → ((x : A) → C x)) + ( ( x : A) → ψ → C x) + ( ( x : A) → ϕ → C x) + ( ϕ → ((x : A) → C x)) + ( \ g x t → g t x) -- first equivalence + ( second (flip-ext-fun + ( I) + ( ψ) + ( \ t → BOT) + ( A) + ( \ t → C) + ( \ t → recBOT))) + ( \ h x t → h x t) -- second equivalence + ( second (equiv-function-equiv-family + ( funext) + ( A) + ( \ x → (ψ → C x)) + ( \ x → (ϕ → C x)) + ( \ x → (subshape-restriction I ψ ϕ (C x) , fiberwise-is-local-C x)))) + ( \ h t x → (h x) t) -- third equivalence + ( second (flip-ext-fun-inv + ( I) + ( \ t → ϕ t) + ( \ t → BOT) + ( A) + ( \ t → C) + ( \ t → recBOT))) +``` + +We can prove the same thing when $X$ is a shape and $C : X → U$ is fiberwise +local. + +```rzk +#def is-local-subshape-inclusion-extension-type uses (extext) + ( I J : CUBE) + ( χ : I → TOPE) + ( ψ : J → TOPE) + ( ϕ : ψ → TOPE) + ( A : χ → U) + ( fiberwise-is-local-A : (s : χ) → is-local-type J ψ ϕ (A s)) + : is-local-type J ψ ϕ ((s : χ) → A s) + := + is-equiv-triple-comp + ( ψ → (s : χ) → A s) + ( ( s : χ) → ψ → A s) + ( ( s : χ) → ϕ → A s) + ( ϕ → (s : χ) → A s) + ( \ g s t → g t s) -- first equivalence + ( second + ( fubini + ( J) + ( I) + ( \ t → ψ t) + ( \ t → BOT) + ( χ) + ( \ s → BOT) + ( \ t s → A s) + ( \ u → recBOT))) + ( \ h s t → h s t) -- second equivalence + ( second (equiv-extensions-equiv extext I χ (\ _ → BOT) + ( \ s → ψ → A s) + ( \ s → ϕ → A s) + ( \ s → (subshape-restriction J ψ ϕ (A s) , fiberwise-is-local-A s)) + ( \ _ → recBOT))) + ( \ h t s → (h s) t) -- third equivalence + ( second + ( fubini + ( I) + ( J) + ( χ) + ( \ s → BOT) + ( \ t → ϕ t) + ( \ t → BOT) + ( \ s t → A s) + ( \ u → recBOT))) +``` + ### Properties of local types / unique extension types We fix a shape inclusion `ϕ ⊂ ψ`. diff --git a/src/simplicial-hott/05-segal-types.rzk.md b/src/simplicial-hott/05-segal-types.rzk.md index d78d0e77..ff4fb933 100644 --- a/src/simplicial-hott/05-segal-types.rzk.md +++ b/src/simplicial-hott/05-segal-types.rzk.md @@ -487,7 +487,7 @@ witnesses of the equivalence). ( k (0₂ , 0₂)) (k (1₂ , 0₂)) (k (1₂ , 1₂)) ( \ t → k (t , 0₂)) (\ t → k (1₂ , t)) ( h))) - , ( is-equiv-projection-contractible-fibers + , ( is-equiv-projection-contractible-fibers ( Λ → A) ( \ k → Σ ( h : hom A (k (0₂ , 0₂)) (k (1₂ , 1₂))) @@ -606,34 +606,14 @@ all $x$ then $(x : X) → A x$ is a Segal type. ( fiberwise-is-segal-A : (x : X) → is-local-horn-inclusion (A x)) : is-local-horn-inclusion ((x : X) → A x) := - is-equiv-triple-comp - ( Δ² → ((x : X) → A x)) - ( ( x : X) → Δ² → A x) - ( ( x : X) → Λ → A x) - ( Λ → ((x : X) → A x)) - ( \ g x t → g t x) -- first equivalence - ( second (flip-ext-fun - ( 2 × 2) - ( Δ²) - ( \ t → BOT) - ( X) - ( \ t → A) - ( \ t → recBOT))) - ( \ h x t → h x t) -- second equivalence - ( second (equiv-function-equiv-family - ( funext) - ( X) - ( \ x → (Δ² → A x)) - ( \ x → (Λ → A x)) - ( \ x → (horn-restriction (A x) , fiberwise-is-segal-A x)))) - ( \ h t x → (h x) t) -- third equivalence - ( second (flip-ext-fun-inv - ( 2 × 2) - ( Λ) - ( \ t → BOT) - ( X) - ( \ t → A) - ( \ t → recBOT))) + is-local-function-type-fiberwise-is-local + ( funext) + ( 2 × 2) + ( Δ²) + ( \ t → Λ t) + ( X) + ( A) + ( fiberwise-is-segal-A) #def is-segal-function-type uses (funext) ( X : U) @@ -659,39 +639,15 @@ then $(x : X) → A x$ is a Segal type. ( fiberwise-is-segal-A : (s : ψ) → is-local-horn-inclusion (A s)) : is-local-horn-inclusion ((s : ψ) → A s) := - is-equiv-triple-comp - ( Δ² → (s : ψ) → A s) - ( ( s : ψ) → Δ² → A s) - ( ( s : ψ) → Λ → A s) - ( Λ → (s : ψ) → A s) - ( \ g s t → g t s) -- first equivalence - ( second - ( fubini - ( 2 × 2) - ( I) - ( Δ²) - ( \ t → BOT) - ( ψ) - ( \ s → BOT) - ( \ t s → A s) - ( \ u → recBOT))) - ( \ h s t → h s t) -- second equivalence - ( second (equiv-extensions-equiv extext I ψ (\ _ → BOT) - ( \ s → Δ² → A s) - ( \ s → Λ → A s) - ( \ s → (horn-restriction (A s) , fiberwise-is-segal-A s)) - ( \ _ → recBOT))) - ( \ h t s → (h s) t) -- third equivalence - ( second - ( fubini - ( I) - ( 2 × 2) - ( ψ) - ( \ s → BOT) - ( Λ) - ( \ t → BOT) - ( \ s t → A s) - ( \ u → recBOT))) + is-local-subshape-inclusion-extension-type + ( extext) + ( I) + ( 2 × 2) + ( ψ) + ( Δ²) + ( \ t → Λ t) + ( A) + ( fiberwise-is-segal-A) #def is-segal-extension-type uses (extext) ( I : CUBE)