-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprober.py
executable file
·442 lines (389 loc) · 17.9 KB
/
prober.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#! /usr/bin/python3
'''
This file is part of Lightning Network Probing Simulator.
Copyright © 2020-2021 University of Luxembourg
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
SPDX-FileType: SOURCE
SPDX-FileCopyrightText: 2020-2021 University of Luxembourg
SPDX-License-Identifier: MIT
'''
'''
A model of an attacker who issues probes and updates balance estimates.
'''
from hop import Hop, dir0, dir1
from graph import create_multigraph_from_snapshot, ln_multigraph_to_hop_graph
import networkx as nx
from random import random, shuffle
class Prober:
def __init__(self, snapshot_filename, node_id, entry_nodes, entry_channel_capacity, granularity=1):
'''
Initialize a Prober.
Parameters:
- snapshot_filename: a file with a clightning's listchannels.json snapshot
- node_id: the node ID for the prober
- entry_nodes: node IDs of nodes that the prober opens channels to
- entry_channel_capacity: the capacity of each entry channel
- granularity: the prober wants to know balance up to this granularity (in satoshis)
'''
self.our_node_id = node_id
# parse snapshot date from filename to include in plot title
self.snapshot_date = snapshot_filename[-len("yyyy-mm-dd.json"):-len(".json")]
ln_multigraph = create_multigraph_from_snapshot(snapshot_filename)
self.lnhopgraph = ln_multigraph_to_hop_graph(ln_multigraph)
for entry_node in entry_nodes:
self.open_channel(self.our_node_id, entry_node, entry_channel_capacity)
self.local_routing_graph = self.lnhopgraph.to_directed()
def __str__(self):
return "\n".join([str(self.lnhopgraph[first][second]["hop"]) for first, second in self.lnhopgraph.edges()])
def open_channel(self, first, second, capacity, push_satoshis=0):
'''
Add a new channel to the LN model graph.
Parameters:
- first: the node opening the channel
- second: the node accepting the channel
- capacity: the new channel's capacity
- push_satoshis: the initial balance of second (default: 0, i.e., all capacity is at first)
'''
if first not in self.lnhopgraph.nodes():
self.lnhopgraph.add_node(first)
if second not in self.lnhopgraph.nodes():
self.lnhopgraph.add_node(second)
direction = dir0 if first < second else dir1
balance_at_first = capacity if direction == dir0 else 0
if self.lnhopgraph.has_edge(first, second):
hop = self.lnhopgraph[first][second]["hop"]
capacities = hop.c.append(capacity)
if direction == dir0:
e_dir0 = hop.e[dir0].append(len(capacities) + 1)
else:
e_dir1 = hop.e[dir1].append(len(capacities) + 1)
balances = hop.balances.append(balance_at_first)
updated_hop = Hop(capacities, e_dir0, e_dir1, balances)
#print("Updated hop:", updated_hop)
self.lnhopgraph[first][second]["hop"] = updated_hop
else:
self.lnhopgraph.add_edge(first, second)
e_dir0, e_dir1 = ([0], []) if direction == dir0 else ([], [0])
self.lnhopgraph[first][second]["hop"] = Hop([capacity], e_dir0, e_dir1, [balance_at_first])
def filtered_routing_graph_for_amount(self, amount, exclude_nodes):
'''
Create a filtered directed routing graph.
For each routing attempt, we create a new graph view that excludes
edges that we know cannot forward the required amount.
Parameters:
- amount: the required payment amount
- exclude_nodes: additionally, exclude these nodes from the view
'''
def filter_edge(n1, n2):
'''
Return True if the edge is kept, False if it is excluded.
Parameters:
- n1, n2: node IDs of the vertices
'''
hop = self.lnhopgraph[n1][n2]["hop"]
direction = dir0 if n1 < n2 else dir1
if direction == dir0:
return hop.can_forward(dir0) and amount <= hop.h_u
else:
return hop.can_forward(dir1) and amount <= hop.g_u
def filter_node(n):
'''
Return True if the node is kept, False if it is excluded.
A generic User generally shouldn't exclude nodes.
A Prober, however, excludes the target node and calculates routes to the previous node
to ensure the route includes the target hop as the last hop.
Parameters:
- n: node ID of the node
'''
return True if not exclude_nodes else n not in exclude_nodes
return nx.subgraph_view(self.local_routing_graph, filter_node=filter_node, filter_edge=filter_edge)
def paths_for_amount(self, target_hop, amount, exclude_nodes=[], max_paths_suggested=None):
'''
Create a generator for paths suitable for the given amount w.r.t. to our knowledge so far.
Return None is no such path exists.
Parameters:
- n1: the first target node ID
- n2: the second target node ID
- amount: the amount to send (in satoshis)
- exclude_nodes: the list of nodes to exclude form paths
- max_paths_suggested: stop generation after this many paths have been generated
Return:
- next_path: the next path, or StopIteration if no more paths exist or max_paths_suggested exceeded
'''
(n1, n2) = target_hop
routing_graph = self.filtered_routing_graph_for_amount(amount, exclude_nodes)
if n1 not in routing_graph:
#print("Target", n1, "not in filtered graph, can't find path.")
yield from ()
if not nx.has_path(routing_graph, self.our_node_id, n1):
#print("No path from", self.our_node_id, "to", n1)
yield from ()
paths = nx.shortest_simple_paths(routing_graph, source=self.our_node_id, target=n1)
paths_suggested = 0
while (max_paths_suggested is None or paths_suggested < max_paths_suggested):
try:
next_path = next(paths)
paths_suggested += 1
#print("Found path after suggested", paths_suggested, "paths:", next_path)
yield next_path + [n2]
except nx.exception.NetworkXNoPath:
yield from ()
yield from ()
def issue_probe_along_path(self, path, amount):
'''
Send a probe along a path and observe the result.
Parameters:
- path: a list of node pairs defining a path
- amount: the probe amount
Return:
- reached_target: True if the probe reached (either passed or failed) the target hop,
False if the probe failed at an intermediary hop
'''
# ensure we don't probe our own channels
assert(path[0] == self.our_node_id)
node_pairs = [p for p in zip(path, path[1:])]
reached_target = False
for n1, n2 in node_pairs:
reached_target = n2 == path[-1]
hop = self.lnhopgraph[n1][n2]["hop"]
direction = dir0 if n1 < n2 else dir1
probe_passed = hop.probe(direction, amount)
if not probe_passed:
break
#print("probe reached_target?", reached_target)
return reached_target
def probe_hop(self, target_node_pair, bs, jamming, max_failed_probes_per_hop=10, best_dir_chance=0.75):
'''
Probe a given target hop (in general, with multiple probes along different paths).
Parameters:
- target_node_pair: a pair of node IDs defining the target hop
- bs: specify probe amount choice method
- jamming: use jamming-enhanced probing after "regular" probing
- max_failed_probes_per_hop: stop probing the hop is this many probes didn't reach it
- best_dir_chance: choosing between two possible directions, flip a coin biased in favor of "best" direction
Return:
- num_probes: how many probes were made
- reached_target: True if we ever reached the target
'''
target_hop = self.lnhopgraph[target_node_pair[0]][target_node_pair[1]]["hop"]
known_failed_amount = {dir0: None, dir1: None}
#print("\n----------------------\nProbing hop", target_node_pair)
#print(target_hop)
def probe_target_hop_in_direction(direction, jamming):
'''
Probe the target hop in a given direction, with or without jamming.
Parameters:
- direction: in which direction to probe
- jamming: True if we're jamming
'''
made_probe, reached_target = False, False
if target_hop.worth_probing() if jamming else target_hop.worth_probing_h_or_g(direction):
amount = target_hop.next_a(direction, bs, jamming)
#print("Suggest amount", amount)
guaranteed_fail = amount >= known_failed_amount[direction] if known_failed_amount[direction] is not None else False
if not guaranteed_fail:
hop_direction = dir0 if target_node_pair[0] < target_node_pair[1] else dir1
target_node_pair_in_order = target_node_pair if hop_direction == direction else reversed(target_node_pair)
paths = self.paths_for_amount(target_node_pair_in_order, amount)
try:
#print("Trying next path for direction", "dir0" if direction else "dir1", ", amount:", amount)
path = next(paths)
reached_target = self.issue_probe_along_path(path, amount)
made_probe = True
except StopIteration:
#print("Path iteration stopped for direction", "dir0" if direction else "dir1", ", amount:", amount)
known_failed_amount[direction] = amount
else:
#print("Will not probe: we know NBS amount will fail")
pass
else:
#print("Not worth probing")
pass
return made_probe, reached_target
def choose_dir_amount_and_probe(jamming):
'''
Choose the NBS probing direction and amount and probe it (with multiple probes).
Parameters:
- jamming: True if we're jamming
'''
#print("choose_dir_amount_and_probe: jamming = ", jamming)
num_probes = 0
# this is the suggested (best) direction
best_dir = target_hop.next_dir(bs, jamming)
if jamming:
available_channels_alt_dir = [i for i in target_hop.e[not best_dir] if i not in target_hop.j[not best_dir]]
if len(available_channels_alt_dir) == 0:
alt_dir = None
else:
alt_dir = not best_dir if target_hop.can_forward(not best_dir) else None
else:
alt_dir = not best_dir if target_hop.worth_probing_h_or_g(not best_dir) else None
#print("\nNext probe")
#print("Preferred direction:", "dir0" if best_dir else "dir1")
made_probe, reached_target = False, False
did_probes, first_attempt = 0, True
num_probes_failed = 0
while not reached_target and did_probes < max_failed_probes_per_hop:
#print("reached_target = ", reached_target)
#print("did_probes = ", did_probes)
# do the first attempt in the preferred direction
if first_attempt:
direction = best_dir
first_attempt = False
else:
if alt_dir is None:
# only one direction available
if not made_probe:
# we tried the only direction and didn't make a probe
# (no paths or amount known to fail)
# we can't do anything else
break
else:
# trying the only direction once more
direction = best_dir
else:
# alternative direction available
if not made_probe:
# didn't make a probe in this direction - try another
if direction == best_dir:
direction = alt_dir
else:
# we must have tried best direction earlier
# if alt_dir also failed, we must stop
break
else:
# can probe in either of two directions
# choose with coin flip biased in favor of best direction
direction = best_dir if random() < best_dir_chance else alt_dir
made_probe, reached_target = probe_target_hop_in_direction(direction, jamming)
if not reached_target:
num_probes_failed += 1
if made_probe:
did_probes += 1
num_probes += did_probes
if not reached_target:
#print("Cannot reach target hop after", num_probes, "probes")
#print(target_node_pair, target_hop)
pass
return num_probes, reached_target, num_probes_failed
total_num_probes, total_num_probes_failed = 0, 0
while target_hop.worth_probing_h() or target_hop.worth_probing_g():
num_probes, reached_target, probes_failed = choose_dir_amount_and_probe(jamming=False)
total_num_probes += num_probes
total_num_probes_failed += probes_failed
if not reached_target:
break
else:
#print("Probed successfully without jamming.")
pass
if jamming:
for i in range(target_hop.N):
target_hop.unjam(i, dir0)
target_hop.unjam(i, dir1)
# count jams as probes
total_num_probes += target_hop.jam_all_except_in_direction(i, dir0)
total_num_probes += target_hop.jam_all_except_in_direction(i, dir1)
while target_hop.worth_probing_channel(i):
num_probes, reached_target, num_probes_failed = choose_dir_amount_and_probe(jamming=True)
total_num_probes += num_probes
if not reached_target:
break
else:
#print("Probed successfully with jamming.")
pass
target_hop.unjam_all()
#print("Path failed", total_num_probes_failed, "times.")
return total_num_probes
def probe_hops(self, target_hops, bs, jamming):
'''
Probe a list of target hops afresh.
Parameters:
- target_hops: a list of target hops
- bs: probe amount choice method
- jamming: True if use jamming-enhanced probing after "regular" probing
Return:
- total_gain: total achieved informatoin gain on target hops
- probing speed: average probing speed (bit / message) on target hops
'''
self.reset_all_estimates()
def uncertainty_for_target_hops():
return sum([self.lnhopgraph[n1][n2]["hop"].uncertainty for n1, n2 in target_hops])
initial_uncertainty_total = uncertainty_for_target_hops()
num_probes = sum([self.probe_hop(target_hop, bs, jamming) for target_hop in target_hops])
final_uncertainty_total = uncertainty_for_target_hops()
total_gain_bits = initial_uncertainty_total - final_uncertainty_total
if num_probes == 0:
print("Did zero probes, can't calculate probing speed!")
probing_speed = 0
else:
probing_speed = total_gain_bits / num_probes
total_gain = total_gain_bits / initial_uncertainty_total
return total_gain, probing_speed
def reset_all_estimates(self):
for n1,n2 in self.lnhopgraph.edges():
self.lnhopgraph[n1][n2]["hop"].reset_estimates()
def choose_target_hops_with_n_channels(self, max_num_target_hops, num_channels):
'''
Select target hops from the graph with a specific number of (parallel) channels.
Note: we only consider hops that can forward in at least one direction.
Parameters:
- max_num_target_hops: return at most this many target hops
(may return fewer if there are too few hops with this many channels in the graph)
- num_channels: the number of parallel channels in each hop
Return: a list of target hops
'''
# we only choose targets that are enabled in at least one direction
potential_target_hops = [(u,v) for u,v,e in self.lnhopgraph.edges(data=True) if (
e["hop"].N == num_channels and (e["hop"].can_forward(dir0) or e["hop"].can_forward(dir1)))]
shuffle(potential_target_hops)
return potential_target_hops[:max_num_target_hops]
def analyze_graph(self):
'''
Calculate some stats about capacity and structure of hops in the snapshot.
'''
print("\nAnalyzing graph")
all_hops = [self.lnhopgraph.get_edge_data(n1,n2)["hop"] for (n1, n2) in self.lnhopgraph.edges()]
def n_channel_hops(all_hops, min_N, max_N):
return [hop for hop in all_hops if min_N <= hop.N <= max_N]
def share_n_channel_hops(all_hops, min_N, max_N):
return round(len(n_channel_hops(all_hops, min_N, max_N)) / len(all_hops), 4)
def capacity(hop):
return sum(hop.c)
channels_in_hops = [hop.N for hop in all_hops]
#capacity_in_hops = [capacity(hop) for hop in all_hops]
#capacity_in_hops_btc = [c / 100000000 for c in capacity_in_hops]
total_capacity = sum([capacity(hop) for hop in all_hops])
#share_capacity_in_hops = [c / total_capacity for c in capacity_in_hops]
def share_total_capacity_in_n_hops(all_hops, min_N, max_N, total_capacity):
hops = n_channel_hops(all_hops, min_N, max_N)
return round(sum([capacity(hop) for hop in hops]) / total_capacity, 4)
print("Total capacity (BTC):", round(total_capacity / (100*1000*1000), 4))
print("Maximal number of channels in a hop:", max(channels_in_hops))
print("Share of 1-channel hops:", share_n_channel_hops(all_hops, 1, 1), len(n_channel_hops(all_hops, 1, 1)))
print("Share of 2-channel hops:", share_n_channel_hops(all_hops, 2, 2), len(n_channel_hops(all_hops, 2, 2)))
print("Share of 3-channel hops:", share_n_channel_hops(all_hops, 3, 3), len(n_channel_hops(all_hops, 3, 3)))
print("Share of 4-channel hops:", share_n_channel_hops(all_hops, 4, 4), len(n_channel_hops(all_hops, 4, 4)))
print("Share of 5-channel hops:", share_n_channel_hops(all_hops, 5, 5), len(n_channel_hops(all_hops, 5, 5)))
print("Share of <= 5-channel hops:", share_n_channel_hops(all_hops, 1, 5), len(n_channel_hops(all_hops, 1, 5)))
print("Share of <= 10-channel hops:", share_n_channel_hops(all_hops, 1, 10), len(n_channel_hops(all_hops, 1, 10)))
print("Share of capacity in 1-channel hops:", share_total_capacity_in_n_hops(all_hops, 1, 1, total_capacity))
print("Share of capacity in 2-channel hops:", share_total_capacity_in_n_hops(all_hops, 2, 2, total_capacity))
print("Share of capacity in 3-channel hops:", share_total_capacity_in_n_hops(all_hops, 3, 3, total_capacity))
print("Share of capacity in 4-channel hops:", share_total_capacity_in_n_hops(all_hops, 4, 4, total_capacity))
print("Share of capacity in 5-channel hops:", share_total_capacity_in_n_hops(all_hops, 5, 5, total_capacity))
print("Share of capacity of <= 5-channel hops:", share_total_capacity_in_n_hops(all_hops, 1, 5, total_capacity))
print("Share of capacity of <= 10-channel hops:", share_total_capacity_in_n_hops(all_hops, 1, 10, total_capacity))