This repository has been archived by the owner on Apr 13, 2023. It is now read-only.
forked from tensorflow/swift-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
BERTCheckpointReader.swift
63 lines (60 loc) · 3.8 KB
/
BERTCheckpointReader.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Copyright 2020 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Checkpoints
import Datasets
import Foundation
import ModelSupport
import TensorFlow
extension TransformerEncoderLayer {
public mutating func load(bert reader: CheckpointReader, prefix: String) {
multiHeadAttention.queryWeight = reader.readTensor(
name: "\(prefix)/attention/self/query/kernel")
multiHeadAttention.queryBias = reader.readTensor(name: "\(prefix)/attention/self/query/bias")
multiHeadAttention.keyWeight = reader.readTensor(name: "\(prefix)/attention/self/key/kernel")
multiHeadAttention.keyBias = reader.readTensor(name: "\(prefix)/attention/self/key/bias")
multiHeadAttention.valueWeight = reader.readTensor(
name: "\(prefix)/attention/self/value/kernel")
multiHeadAttention.valueBias = reader.readTensor(name: "\(prefix)/attention/self/value/bias")
attentionWeight = reader.readTensor(name: "\(prefix)/attention/output/dense/kernel")
attentionBias = reader.readTensor(name: "\(prefix)/attention/output/dense/bias")
attentionLayerNorm.offset = reader.readTensor(name: "\(prefix)/attention/output/LayerNorm/beta")
attentionLayerNorm.scale = reader.readTensor(name: "\(prefix)/attention/output/LayerNorm/gamma")
intermediateWeight = reader.readTensor(name: "\(prefix)/intermediate/dense/kernel")
intermediateBias = reader.readTensor(name: "\(prefix)/intermediate/dense/bias")
outputWeight = reader.readTensor(name: "\(prefix)/output/dense/kernel")
outputBias = reader.readTensor(name: "\(prefix)/output/dense/bias")
outputLayerNorm.offset = reader.readTensor(name: "\(prefix)/output/LayerNorm/beta")
outputLayerNorm.scale = reader.readTensor(name: "\(prefix)/output/LayerNorm/gamma")
}
public mutating func load(albert reader: CheckpointReader, prefix: String) {
multiHeadAttention.queryWeight = reader.readTensor(
name: "\(prefix)/attention_1/self/query/kernel")
multiHeadAttention.queryBias = reader.readTensor(name: "\(prefix)/attention_1/self/query/bias")
multiHeadAttention.keyWeight = reader.readTensor(name: "\(prefix)/attention_1/self/key/kernel")
multiHeadAttention.keyBias = reader.readTensor(name: "\(prefix)/attention_1/self/key/bias")
multiHeadAttention.valueWeight = reader.readTensor(
name: "\(prefix)/attention_1/self/value/kernel")
multiHeadAttention.valueBias = reader.readTensor(name: "\(prefix)/attention_1/self/value/bias")
attentionWeight = reader.readTensor(name: "\(prefix)/attention_1/output/dense/kernel")
attentionBias = reader.readTensor(name: "\(prefix)/attention_1/output/dense/bias")
attentionLayerNorm.offset = reader.readTensor(name: "\(prefix)/LayerNorm/beta")
attentionLayerNorm.scale = reader.readTensor(name: "\(prefix)/LayerNorm/gamma")
intermediateWeight = reader.readTensor(name: "\(prefix)/ffn_1/intermediate/dense/kernel")
intermediateBias = reader.readTensor(name: "\(prefix)/ffn_1/intermediate/dense/bias")
outputWeight = reader.readTensor(name: "\(prefix)/ffn_1/intermediate/output/dense/kernel")
outputBias = reader.readTensor(name: "\(prefix)/ffn_1/intermediate/output/dense/bias")
outputLayerNorm.offset = reader.readTensor(name: "\(prefix)/LayerNorm_1/beta")
outputLayerNorm.scale = reader.readTensor(name: "\(prefix)/LayerNorm_1/gamma")
}
}