-
Notifications
You must be signed in to change notification settings - Fork 310
/
Copy pathbenchmark_anomaly.py
732 lines (655 loc) · 31.2 KB
/
benchmark_anomaly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
#
# Copyright (c) 2022 salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
#
import argparse
import copy
import json
import logging
import os
import sys
import time
import git
from typing import Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from merlion.evaluate.anomaly import (
TSADEvaluatorConfig,
accumulate_tsad_score,
TSADScoreAccumulator as ScoreAcc,
TSADEvaluator,
)
from merlion.models.anomaly.base import DetectorBase
from merlion.models.ensemble.anomaly import DetectorEnsemble
from merlion.evaluate.anomaly import TSADMetric, ScoreType
from merlion.models.factory import ModelFactory
from merlion.transform.resample import TemporalResample
from merlion.utils import TimeSeries
from merlion.utils.resample import to_pd_datetime
from ts_datasets.anomaly import *
logger = logging.getLogger(__name__)
# Benchmark code assumes you have created data/<dirname> symlinks to
# the root directories of all the relevant datasets
MERLION_ROOT = os.path.dirname(os.path.abspath(__file__))
CONFIG_JSON = os.path.join(MERLION_ROOT, "conf", "benchmark_anomaly.json")
DATADIR = os.path.join(MERLION_ROOT, "data")
def parse_args():
with open(CONFIG_JSON, "r") as f:
valid_models = list(json.load(f).keys())
parser = argparse.ArgumentParser(
description="Script to benchmark Merlion time series anomaly detection "
"models. This script assumes that you have pip installed "
"both merlion (this repo's main package) and ts_datasets "
"(a sub-repo)."
)
parser.add_argument(
"--dataset",
default="NAB_all",
help="Name of dataset to run benchmark on. See get_dataset() "
"in ts_datasets/ts_datasets/anomaly/__init__.py for "
"valid options.",
)
parser.add_argument("--data_root", default=None, help="Root directory/file of dataset.")
parser.add_argument("--data_kwargs", default="{}", help="JSON of keyword arguemtns for the data loader.")
parser.add_argument(
"--models",
type=str,
nargs="+",
default=["DefaultDetector"],
help="Name of model (or models in ensemble) to benchmark.",
choices=valid_models,
)
parser.add_argument(
"--retrain_freq",
type=str,
default="default",
help="String (e.g. 1d, 2w, etc.) specifying how often "
"to re-train the model before evaluating it on "
"the next window of data. Note that re-training "
"is unsupervised, i.e. does not use ground truth "
"anomaly labels in any way. Default retrain_freq is "
"1d for univariate data and None for multivariate.",
)
parser.add_argument(
"--train_window",
type=str,
default=None,
help="String (e.g. 30d, 6m, etc.) specifying how much "
"data (in terms of a time window) the model "
"should train on at any point.",
)
parser.add_argument(
"--metric",
type=str,
default="F1",
choices=list(TSADMetric.__members__.keys()),
help="Metric to optimize for (where relevant)",
)
parser.add_argument(
"--point_adj_metric",
type=str,
default="PointAdjustedF1",
choices=list(TSADMetric.__members__.keys()),
help="Final metric to optimize for when evaluating point-adjusted performance",
)
parser.add_argument(
"--pointwise_metric",
type=str,
default="PointwiseF1",
choices=list(TSADMetric.__members__.keys()),
help="Final metric to optimize for when evaluating pointwise performance",
)
parser.add_argument("--unsupervised", action="store_true")
parser.add_argument(
"--tune_on_test",
action="store_true",
default=False,
help="Whether to tune the threshold on both train and "
"test splits of the time series. Useful for "
"metrics like Best F1, or NAB score with "
"threshold optimization.",
)
parser.add_argument(
"--load_checkpoint",
action="store_true",
default=False,
help="Specify this option if you would like continue "
"training your model on a dataset from a "
"checkpoint, instead of restarting from scratch.",
)
parser.add_argument(
"--eval_only",
action="store_true",
default=False,
help="Specify this option if you would like to skip "
"the model training phase, and simply evaluate "
"on partial saved results.",
)
parser.add_argument("--debug", action="store_true", default=False, help="Whether to enable INFO-level logs.")
parser.add_argument(
"--visualize",
action="store_true",
default=False,
help="Whether to plot the model's predictions after "
"training on each example. Mutually exclusive "
"with running any sort of evaluation.",
)
args = parser.parse_args()
args.metric = TSADMetric[args.metric]
args.pointwise_metric = TSADMetric[args.pointwise_metric]
args.visualize = args.visualize and not args.eval_only
args.data_kwargs = json.loads(args.data_kwargs)
assert isinstance(args.data_kwargs, dict)
if args.retrain_freq.lower() in ["", "none", "null"]:
args.retrain_freq = None
elif args.retrain_freq != "default":
rf = pd.to_timedelta(args.retrain_freq).total_seconds()
if rf % (3600 * 24) == 0:
args.retrain_freq = f"{int(rf/3600/24)}d"
elif rf % 3600 == 0:
args.retrain_freq = f"{int(rf/3600)}h"
elif rf % 60 == 0:
args.retrain_freq = f"{int(rf//60)}min"
else:
args.retrain_freq = f"{int(rf)}s"
return args
def get_dataset_name(dataset: TSADBaseDataset):
name = type(dataset).__name__
if hasattr(dataset, "subset") and dataset.subset is not None:
name += "_" + dataset.subset
if isinstance(dataset, CustomAnomalyDataset):
root = dataset.rootdir
name = os.path.join(name, os.path.basename(os.path.dirname(root) if os.path.isfile(root) else root))
return name
def dataset_to_threshold(dataset: TSADBaseDataset, tune_on_test=False):
if isinstance(dataset, IOpsCompetition):
return 2.25
elif isinstance(dataset, NAB):
return 3.5
elif isinstance(dataset, Synthetic):
return 2
elif isinstance(dataset, MSL):
return 3.0
elif isinstance(dataset, SMAP):
return 3.5
elif isinstance(dataset, SMD):
return 3 if not tune_on_test else 2.5
elif hasattr(dataset, "default_threshold"):
return dataset.default_threshold
return 3
def resolve_model_name(model_name: str):
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
assert model_name != config_dict[model_name]["alias"], "Alias name cannot be the same as the model name"
model_name = config_dict[model_name]["alias"]
return model_name
def get_model(
model_name: str, dataset: TSADBaseDataset, metric: TSADMetric, tune_on_test=False, unsupervised=False
) -> Tuple[DetectorBase, dict]:
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
model_name = config_dict[model_name]["alias"]
# Load the model with default kwargs, but override with dataset-specific
# kwargs where relevant
model_configs = config_dict[model_name]["config"]
model_type = config_dict[model_name].get("model_type", model_name)
model_kwargs = model_configs["default"]
model_kwargs.update(model_configs.get(type(dataset).__name__, {}))
model = ModelFactory.create(name=model_type, **model_kwargs)
# The post-rule train configs are fully specified for each dataset (where
# relevant), with a default option if there is no dataset-specific option.
post_rule_train_configs = config_dict[model_name].get("post_rule_train_config", {})
d = post_rule_train_configs.get("default", {})
d.update(post_rule_train_configs.get(type(dataset).__name__, {}))
if len(d) == 0:
d = copy.copy(model._default_post_rule_train_config)
d["metric"] = None if unsupervised else metric
d.update({"max_early_sec": dataset.max_lead_sec, "max_delay_sec": dataset.max_lag_sec})
t = dataset_to_threshold(dataset, tune_on_test)
model.threshold.alm_threshold = t
d["unsup_quantile"] = None
return model, d
def df_to_merlion(df: pd.DataFrame, md: pd.DataFrame, get_ground_truth=False, transform=None) -> TimeSeries:
"""Converts a pandas dataframe time series to the Merlion format."""
if get_ground_truth:
if False and "changepoint" in md.keys():
series = md["anomaly"] | md["changepoint"]
else:
series = md["anomaly"]
else:
series = df
time_series = TimeSeries.from_pd(series)
if transform is not None:
time_series = transform(time_series)
return time_series
def train_model(
model_name,
metric,
dataset,
retrain_freq=None,
train_window=None,
load_checkpoint=False,
visualize=False,
debug=False,
unsupervised=False,
tune_on_test=False,
):
"""Trains a model on the time series dataset given, and save their predictions to a dataset."""
resampler = None
if isinstance(dataset, IOpsCompetition):
resampler = TemporalResample("5min")
model_name = resolve_model_name(model_name)
dataset_name = get_dataset_name(dataset)
model_dir = model_name if retrain_freq is None else f"{model_name}_{retrain_freq}"
dirname = os.path.join("results", "anomaly", model_dir)
csv = os.path.join(dirname, f"pred_{dataset_name}.csv.gz")
config_fname = os.path.join(dirname, f"{dataset_name}_config.json")
checkpoint = os.path.join(dirname, f"ckpt_{dataset_name}.txt")
# Determine where to start within the dataset if there is a checkpoint
i0 = 0
if os.path.isfile(checkpoint) and os.path.isfile(csv) and load_checkpoint:
with open(checkpoint, "r") as f:
i0 = int(f.read().rstrip("\n"))
# Validate & sanitize the existing CSV checkpoint
df = pd.read_csv(csv, dtype={"trainval": bool, "idx": int})
df = df[df["idx"] < i0]
if set(df["idx"]) == set(range(i0)):
df.to_csv(csv, index=False)
else:
i0 = 0
model = None
for i, (df, md) in enumerate(tqdm(dataset)):
if i < i0:
continue
# Reload model & get the train / test split for this time series
model, post_rule_train_config = get_model(
model_name=model_name, dataset=dataset, metric=metric, tune_on_test=tune_on_test, unsupervised=unsupervised
)
delay = post_rule_train_config["max_delay_sec"]
train_vals = df_to_merlion(df[md.trainval], md[md.trainval], get_ground_truth=False, transform=resampler)
test_vals = df_to_merlion(df[~md.trainval], md[~md.trainval], get_ground_truth=False, transform=resampler)
train_anom = df_to_merlion(df[md.trainval], md[md.trainval], get_ground_truth=True)
test_anom = df_to_merlion(df[~md.trainval], md[~md.trainval], get_ground_truth=True)
# Set up an evaluator & get predictions
evaluator = TSADEvaluator(
model=model,
config=TSADEvaluatorConfig(
train_window=train_window,
retrain_freq=retrain_freq,
max_delay_sec=delay,
max_early_sec=getattr(model.threshold, "suppress_secs", delay),
),
)
train_scores, test_scores = evaluator.get_predict(
train_vals=train_vals,
test_vals=test_vals,
post_process=False,
train_kwargs={"anomaly_labels": train_anom, "post_rule_train_config": post_rule_train_config},
)
# Write the model's predictions to the csv file, starting a new one
# if we aren't loading an existing checkpoint. Scores from all time
# series in the dataset are combined together in a single csv. Each
# line in the csv corresponds to a point in a time series, and contains
# the timestamp, raw anomaly score, and index of the time series.
if not visualize:
if i == i0 == 0:
os.makedirs(os.path.dirname(csv), exist_ok=True)
os.makedirs(os.path.dirname(checkpoint), exist_ok=True)
df = pd.DataFrame({"timestamp": [], "y": [], "trainval": [], "idx": []})
df.to_csv(csv, index=False)
df = pd.read_csv(csv)
ts_df = pd.concat((train_scores.to_pd(), test_scores.to_pd()))
ts_df.columns = ["y"]
ts_df.loc[:, "timestamp"] = ts_df.index.view(int) // 1e9
ts_df.loc[:, "trainval"] = [j < len(train_scores) for j in range(len(ts_df))]
ts_df.loc[:, "idx"] = i
df = pd.concat((df, ts_df), ignore_index=True)
df.to_csv(csv, index=False)
# Start from time series i+1 if loading a checkpoint.
with open(checkpoint, "w") as f:
f.write(str(i + 1))
if visualize or debug:
# Train the post-rule on the appropriate labels
score = test_scores if tune_on_test else train_scores
label = test_anom if tune_on_test else train_anom
model.train_post_process(
train_result=score, anomaly_labels=label, post_rule_train_config=post_rule_train_config
)
# Log (many) evaluation metrics for the time series
score_acc = evaluator.evaluate(ground_truth=test_anom, predict=model.threshold(test_scores))
mttd = score_acc.mean_time_to_detect()
if mttd < pd.to_timedelta(0):
mttd = f"-{-mttd}"
logger.info(f"\nPerformance on time series {i+1}/{len(dataset)}")
logger.info("Revised Point-Adjusted Metrics")
logger.info(f"F1 Score: {score_acc.f1(score_type=ScoreType.RevisedPointAdjusted):.4f}")
logger.info(f"Precision: {score_acc.precision(score_type=ScoreType.RevisedPointAdjusted):.4f}")
logger.info(f"Recall: {score_acc.recall(score_type=ScoreType.RevisedPointAdjusted):.4f}\n")
logger.info(f"Mean Time To Detect Anomalies: {mttd}")
logger.info(f"Mean Detected Anomaly Duration: {score_acc.mean_detected_anomaly_duration()}")
logger.info(f"Mean Anomaly Duration: {score_acc.mean_anomaly_duration()}\n")
if debug:
logger.info(f"Pointwise metrics")
logger.info(f"F1 Score: {score_acc.f1(score_type=ScoreType.Pointwise):.4f}")
logger.info(f"Precision: {score_acc.precision(score_type=ScoreType.Pointwise):.4f}")
logger.info(f"Recall: {score_acc.recall(score_type=ScoreType.Pointwise):.4f}\n")
logger.info("Point-Adjusted Metrics")
logger.info(f"F1 Score: {score_acc.f1(score_type=ScoreType.PointAdjusted):.4f}")
logger.info(f"Precision: {score_acc.precision(score_type=ScoreType.PointAdjusted):.4f}")
logger.info(f"Recall: {score_acc.recall(score_type=ScoreType.PointAdjusted):.4f}\n")
logger.info(f"NAB Scores")
logger.info(f"NAB score (balanced): {score_acc.nab_score():.4f}")
logger.info(f"NAB score (low FP): {score_acc.nab_score(fp_weight=0.22):.4f}")
logger.info(f"NAB score (low FN): {score_acc.nab_score(fn_weight=2.0):.4f}\n")
if visualize:
# Make a plot
alarms = model.threshold(test_scores)
fig = model.get_figure(time_series=test_vals, time_series_prev=train_vals, plot_time_series_prev=True)
fig.anom = alarms.univariates[alarms.names[0]]
fig, ax = fig.plot(figsize=(1800, 600))
# Overlay windows indicating the true anomalies
all_anom = train_anom + test_anom
t, y = zip(*all_anom)
y = np.asarray(y).flatten()
splits = np.where(y[1:] != y[:-1])[0] + 1
splits = np.concatenate(([0], splits, [len(y) - 1]))
anom_windows = [(splits[k], splits[k + 1]) for k in range(len(splits) - 1) if y[splits[k]]]
for i_0, i_f in anom_windows:
t_0 = to_pd_datetime(t[i_0])
t_f = to_pd_datetime(t[i_f])
ax.axvspan(t_0, t_f, color="#d07070", zorder=-1, alpha=0.5)
time.sleep(2)
plt.show()
# Save full experimental config
if model is not None and not visualize:
full_config = dict(
model_config=model.config.to_dict(),
evaluator_config=evaluator.config.to_dict(),
code_version_info=get_code_version_info(),
)
os.makedirs(os.path.dirname(config_fname), exist_ok=True)
with open(config_fname, "w") as f:
json.dump(full_config, f, indent=2, sort_keys=True)
def get_code_version_info():
return dict(time=str(pd.Timestamp.now()), commit=git.Repo(search_parent_directories=True).head.object.hexsha)
def read_model_predictions(dataset: TSADBaseDataset, model_dir: str):
"""
Returns a list of lists all_preds, where all_preds[i] is the model's raw
anomaly scores for time series i in the dataset.
"""
csv = os.path.join("results", "anomaly", model_dir, f"pred_{get_dataset_name(dataset)}.csv.gz")
preds = pd.read_csv(csv, dtype={"trainval": bool, "idx": int})
preds["timestamp"] = to_pd_datetime(preds["timestamp"])
return [preds[preds["idx"] == i].set_index("timestamp") for i in sorted(preds["idx"].unique())]
def evaluate_predictions(
model_names,
dataset,
all_model_preds,
metric: TSADMetric,
pointwise_metric: TSADMetric,
point_adj_metric: TSADMetric,
tune_on_test=False,
unsupervised=False,
debug=False,
):
scores_rpa, scores_pw, scores_pa = [], [], []
use_ucr_eval = isinstance(dataset, UCR) and (unsupervised or not tune_on_test)
resampler = None
if isinstance(dataset, IOpsCompetition):
resampler = TemporalResample("5min")
for i, (true, md) in enumerate(tqdm(dataset)):
# Get time series for the train & test splits of the ground truth
idx = ~md.trainval if tune_on_test else md.trainval
true_train = df_to_merlion(true[idx], md[idx], get_ground_truth=True)
true_test = df_to_merlion(true[~md.trainval], md[~md.trainval], get_ground_truth=True)
for acc_id, (simple_threshold, opt_metric, scores) in enumerate(
[
(use_ucr_eval and not tune_on_test, metric, scores_rpa),
(True, pointwise_metric, scores_pw),
(True, point_adj_metric, scores_pa),
]
):
if acc_id > 0 and use_ucr_eval:
scores_pw = scores_rpa
scores_pa = scores_rpa
continue
# For each model, load its raw anomaly scores for the i'th time series
# as a UnivariateTimeSeries, and collect all the models' scores as a
# TimeSeries. Do this for both the train and test splits.
if i >= min(len(p) for p in all_model_preds):
break
pred = [model_preds[i] for model_preds in all_model_preds]
pred_train = [p[~p["trainval"]] if tune_on_test else p[p["trainval"]] for p in pred]
pred_train = [TimeSeries.from_pd(p["y"]) for p in pred_train]
pred_test = [p[~p["trainval"]] for p in pred]
pred_test = [TimeSeries.from_pd(p["y"]) for p in pred_test]
# Train each model's post rule on the train split
models = []
for name, train, og_pred in zip(model_names, pred_train, pred):
m, prtc = get_model(
model_name=name,
dataset=dataset,
metric=opt_metric,
tune_on_test=tune_on_test,
unsupervised=unsupervised,
)
m.config.enable_threshold = len(model_names) == 1
if simple_threshold:
m.threshold = m.threshold.to_simple_threshold()
if tune_on_test and not unsupervised:
m.calibrator.train(TimeSeries.from_pd(og_pred["y"][og_pred["trainval"]]))
m.train_post_process(train_result=train, anomaly_labels=true_train, post_rule_train_config=prtc)
models.append(m)
# Get the lead & lag time for the dataset
early, delay = dataset.max_lead_sec, dataset.max_lag_sec
if early is None:
leads = [getattr(m.threshold, "suppress_secs", delay) for m in models]
leads = [dt for dt in leads if dt is not None]
early = None if len(leads) == 0 else max(leads)
# No further training if we only have 1 model
if len(models) == 1:
model = models[0]
pred_test_raw = pred_test[0]
# If we have multiple models, train an ensemble model
else:
threshold = dataset_to_threshold(dataset, tune_on_test)
ensemble_threshold_train_config = dict(
metric=opt_metric if tune_on_test else None,
max_early_sec=early,
max_delay_sec=delay,
unsup_quantile=None,
)
# Train the ensemble and its post-rule on the current time series
model = DetectorEnsemble(models=models)
use_m = [len(p) > 1 for p in zip(models, pred_train)]
pred_train = [m.post_rule(p) for m, p, use in zip(models, pred_train, use_m) if use]
pred_test = [m.post_rule(p) for m, p, use in zip(models, pred_test, use_m) if use]
pred_train = model.train_combiner(pred_train, true_train)
if simple_threshold:
model.threshold = model.threshold.to_simple_threshold()
model.threshold.alm_threshold = threshold
model.train_post_process(
train_result=pred_train,
anomaly_labels=true_train,
post_rule_train_config=ensemble_threshold_train_config,
)
pred_test_raw = model.combiner(pred_test, true_test)
# For UCR dataset, the evaluation just checks whether the point with the highest
# anomaly score is anomalous or not.
if acc_id == 0 and use_ucr_eval and not unsupervised:
df = pred_test_raw.to_pd()
df[np.abs(df) < df.max()] = 0
pred_test = TimeSeries.from_pd(df)
else:
pred_test = model.post_rule(pred_test_raw)
# Compute the individual components comprising various scores.
score = accumulate_tsad_score(true_test, pred_test, max_early_sec=early, max_delay_sec=delay)
# Make sure all time series have exactly one detection for UCR dataset (either 1 TP, or 1 FN & 1 FP).
if acc_id == 0 and use_ucr_eval:
n_anom = score.num_tp_anom + score.num_fn_anom
if n_anom == 0:
score.num_tp_anom, score.num_fn_anom, score.num_fp = 0, 0, 0
elif score.num_tp_anom > 0:
score.num_tp_anom, score.num_fn_anom, score.num_fp = 1, 0, 0
else:
score.num_tp_anom, score.num_fn_anom, score.num_fp = 0, 1, 1
scores.append(score)
# Aggregate statistics from full dataset
score_rpa = sum(scores_rpa, ScoreAcc())
score_pw = sum(scores_pw, ScoreAcc())
score_pa = sum(scores_pa, ScoreAcc())
# Determine if it's better to have all negatives for each time series if
# using the test data in a supervised way.
if tune_on_test and not unsupervised:
# Convert true positives to false negatives, and remove all false positives.
# Keep the updated version if it improves F1 score.
for s in sorted(scores_rpa, key=lambda x: x.num_fp, reverse=True):
stype = ScoreType.RevisedPointAdjusted
sprime = copy.deepcopy(score_rpa)
sprime.num_tp_anom -= s.num_tp_anom
sprime.num_fn_anom += s.num_tp_anom
sprime.num_fp -= s.num_fp
sprime.tp_score -= s.tp_score
sprime.fp_score -= s.fp_score
if score_rpa.f1(stype) < sprime.f1(stype):
# Update anomaly durations
for duration, delay in zip(s.tp_anom_durations, s.tp_detection_delays):
sprime.tp_anom_durations.remove(duration)
sprime.tp_detection_delays.remove(delay)
score_rpa = sprime
# Repeat for pointwise scores
for s in sorted(scores_pw, key=lambda x: x.num_fp, reverse=True):
stype = ScoreType.Pointwise
sprime = copy.deepcopy(score_pw)
sprime.num_tp_pointwise -= s.num_tp_pointwise
sprime.num_fn_pointwise += s.num_tp_pointwise
sprime.num_fp -= s.num_fp
if score_pw.f1(stype) < sprime.f1(stype):
score_pw = sprime
# Repeat for point-adjusted scores
for s in sorted(scores_pa, key=lambda x: x.num_fp, reverse=True):
stype = ScoreType.PointAdjusted
sprime = copy.deepcopy(score_pa)
sprime.num_tp_point_adj -= s.num_tp_point_adj
sprime.num_fn_point_adj += s.num_tp_point_adj
sprime.num_fp -= s.num_fp
if score_pa.f1(stype) < sprime.f1(stype):
score_pa = sprime
# Compute MTTD & report F1, precision, and recall
mttd = score_rpa.mean_time_to_detect()
if mttd < pd.to_timedelta(0):
mttd = f"-{-mttd}"
print()
print("Revised point-adjusted metrics")
print(f"F1 score: {score_rpa.f1(ScoreType.RevisedPointAdjusted):.4f}")
print(f"Precision: {score_rpa.precision(ScoreType.RevisedPointAdjusted):.4f}")
print(f"Recall: {score_rpa.recall(ScoreType.RevisedPointAdjusted):.4f}")
print()
print(f"Mean Time To Detect Anomalies: {mttd}")
print(f"Mean Detected Anomaly Duration: {score_rpa.mean_detected_anomaly_duration()}")
print(f"Mean Anomaly Duration: {score_rpa.mean_anomaly_duration()}")
print()
if debug:
print("Pointwise metrics")
print(f"F1 score: {score_pw.f1(ScoreType.Pointwise):.4f}")
print(f"Precision: {score_pw.precision(ScoreType.Pointwise):.4f}")
print(f"Recall: {score_pw.recall(ScoreType.Pointwise):.4f}")
print()
print("Point-adjusted metrics")
print(f"F1 score: {score_pa.f1(ScoreType.PointAdjusted):.4f}")
print(f"Precision: {score_pa.precision(ScoreType.PointAdjusted):.4f}")
print(f"Recall: {score_pa.recall(ScoreType.PointAdjusted):.4f}")
print()
print("NAB Scores")
print(f"NAB Score (balanced): {score_rpa.nab_score():.4f}")
print(f"NAB Score (high precision): {score_rpa.nab_score(fp_weight=0.22):.4f}")
print(f"NAB Score (high recall): {score_rpa.nab_score(fn_weight=2.0):.4f}")
print()
return score_rpa, score_pw, score_pa
def main():
args = parse_args()
level = logging.INFO if args.debug or args.visualize else logging.WARNING
logging.basicConfig(
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", stream=sys.stdout, level=level
)
dataset = get_dataset(args.dataset, rootdir=args.data_root, **args.data_kwargs)
retrain_freq, train_window = args.retrain_freq, args.train_window
univariate = dataset[0][0].shape[1] == 1
if retrain_freq == "default":
retrain_freq = "1d" if univariate else None
desc = "univariate" if univariate else "multivariate"
logger.warning(f"Setting retrain_freq = {retrain_freq} for {desc} dataset {type(dataset).__name__}")
for model_name in args.models:
if not args.eval_only:
print(f"Training model {model_name}...")
train_model(
model_name=model_name,
dataset=dataset,
metric=args.metric,
tune_on_test=args.tune_on_test,
unsupervised=args.unsupervised,
debug=args.debug,
visualize=args.visualize,
load_checkpoint=args.load_checkpoint,
retrain_freq=retrain_freq,
train_window=train_window,
)
# Read in & evaluate the models' predictions
if args.visualize:
logger.info("Skipping evaluation because --visualize flag was given.")
else:
model_names = [resolve_model_name(name) for name in args.models]
model_dirs = [name if retrain_freq is None else f"{name}_{retrain_freq}" for name in model_names]
all_model_preds = [read_model_predictions(dataset=dataset, model_dir=model_dir) for model_dir in model_dirs]
score_acc, pw_score_acc, pa_score_acc = evaluate_predictions(
model_names=args.models,
dataset=dataset,
all_model_preds=all_model_preds,
debug=args.debug,
metric=args.metric,
point_adj_metric=args.point_adj_metric,
pointwise_metric=args.pointwise_metric,
tune_on_test=args.tune_on_test,
unsupervised=args.unsupervised,
)
model_name = "+".join(sorted(resolve_model_name(m) for m in args.models))
summary = os.path.join("results", "anomaly", f"{get_dataset_name(dataset)}_summary.csv")
if os.path.exists(summary):
df = pd.read_csv(summary, index_col=0)
else:
os.makedirs(os.path.dirname(summary), exist_ok=True)
df = pd.DataFrame()
if retrain_freq:
model_name += f"_{retrain_freq}"
if args.unsupervised:
model_name += " (Unsupervised)"
if args.tune_on_test:
model_name += " (Use Test Data)"
df.loc[model_name, "Precision"] = score_acc.precision(ScoreType.RevisedPointAdjusted)
df.loc[model_name, "Recall"] = score_acc.recall(ScoreType.RevisedPointAdjusted)
df.loc[model_name, "F1"] = score_acc.f1(ScoreType.RevisedPointAdjusted)
df.loc[model_name, "Mean Time to Detect"] = score_acc.mean_time_to_detect()
df.loc[model_name, "PA Precision"] = pa_score_acc.precision(ScoreType.PointAdjusted)
df.loc[model_name, "PA Recall"] = pa_score_acc.recall(ScoreType.PointAdjusted)
df.loc[model_name, "PA F1"] = pa_score_acc.f1(ScoreType.PointAdjusted)
df.loc[model_name, "PW Precision"] = pw_score_acc.precision(ScoreType.Pointwise)
df.loc[model_name, "PW Recall"] = pw_score_acc.recall(ScoreType.Pointwise)
df.loc[model_name, "PW F1"] = pw_score_acc.f1(ScoreType.Pointwise)
df = df.loc[sorted(df.index)]
df.to_csv(summary, index=True)
if __name__ == "__main__":
main()