-
Notifications
You must be signed in to change notification settings - Fork 33
/
pvl_huld_parameter_estimation.m
38 lines (31 loc) · 1.18 KB
/
pvl_huld_parameter_estimation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function [Model] = pvl_huld_parameter_estimation(Pmp, Ee, Tm)
% PVL_HULD_PARAMETER_ESTIMATION estimates parameters for the Huld module performance model
%
% Syntax
% [Model] = pvl_huld_parameter_estimation(Pmp, Ee, Tm)
%
% Description
% pvl_huld_parameter_estimation estimates parameters for the Huld module
% performance model [1]. The estimation uses robust regression to fit the
% Huld model, a polynomial in Tm and log(Ee), to Pmp.
%
% Input:
% Pmp - a N x 1 vector of power (W) at the maximum power point.
% Ee - a N x 1 vector of effective irradiance (suns).
% Tm - a N x 1 vector of module (not cell) temperature (C).
%
% Output:
% Model - a structure containing the model parameters
% Model.Pmp0 - estimated Pmp at STC.
% Model.k - a vector of length 6 containing the coefficients k1 through k6.
%
% Sources:
% [1] A power-rating model for crystalline silicon PV modules, T. Huld,
% G. Friesen, A. Skoczek, R. Kenny, T. Sample, M. Field, E. Dunlop, Solar
% Energy Materials and Solar Cells 95(2011), pp 3359-3369.
Y = Pmp./(Ee);
x1 = log(Ee);
x2 = Tm - 25;
beta = pvl_robustfit([x1 x1.^2 x2 x2.*x1 x2.*x1.^2 x2.^2],Y,true);
Model.Pmp0 = beta(1);
Model.k = beta(2:7);