-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModel.py
64 lines (59 loc) · 2.26 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import sys
import pandas as pd
import sklearn
from joblib import load, dump
from sklearn.ensemble import RandomForestClassifier
class Model:
def __init__(self):
self.features = ""
def model(self, file, output, predict):
self.feature = pd.read_csv(file)
random_forest = RandomForestClassifier(300)
labels = []
try:
labels = [int(i) for i in self.feature['label'].tolist()]
except Exception as e:
pass
ids = self.feature["id"]
X_features = self.feature.drop(["id", "header"], axis=1)
try:
X_features = self.feature.drop(["id", "header", "label"], axis=1)
except Exception as e:
pass
if predict:
random_forest = load('STSModel.joblib')
scaler = sklearn.preprocessing.StandardScaler()
scaler.fit(X_features)
X_features_x = scaler.transform(X_features)
res = random_forest.predict(X_features_x)
with open(output, 'w') as f:
for i in range(len(res)):
f.write("{}\t{}\n".format(ids[i], int(round(res[i]))))
if labels:
with open('gold.csv', 'w') as f:
for i in range(len(res)):
f.write("{}\t{}\n".format(ids[i], labels[i]))
else:
scaler = sklearn.preprocessing.StandardScaler()
scaler.fit(X_features)
X_features_x = scaler.transform(X_features)
random_forest.fit(X_features_x, labels)
dump(random_forest, 'STSModel.joblib')
if __name__ == '__main__':
predict = sys.argv[1].strip().lower() == 'predict'
output_file = ""
if predict:
if len(sys.argv) != 4:
print("Please provide 'train' or 'predict', the Feature file, and result output file")
exit(0)
else:
input_file = sys.argv[2]
output_file = sys.argv[3]
else:
if len(sys.argv) != 3:
print("Please provide 'train' or 'predict' and feature file the Feature file")
exit(0)
else:
input_file = sys.argv[2]
model_o = Model()
model_o.model(input_file, output_file, predict)