forked from shirtsgroup/BCC_membrane
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathematical_analysis.py
550 lines (420 loc) · 20 KB
/
mathematical_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#!/usr/bin/env python
# Import packages
import numpy as np
import pandas as pd
import random
from scipy.optimize import fsolve
from scipy.optimize import brentq
import matplotlib.pyplot as plt
import argparse
from sklearn.neighbors import KernelDensity
# from KDEpy import FFTKDE
from sklearn.model_selection import GridSearchCV, KFold
##################################################################################################################
############################################ INPUT PARAMETERS ####################################################
##################################################################################################################
parser = argparse.ArgumentParser()
parser.add_argument('-s','--struct',nargs='+',
help='structure to generate distribution for')
parser.add_argument('-n','--sample',type=int,
help='number of samples in each distribution')
parser.add_argument('-r','--restrict',action='store_true',
help='only save reasonable values, default = False')
parser.add_argument('-o','--output',default='output.png',
help='name of the output figure file')
args = parser.parse_args()
# Parse arguments for which distributions to generate
sample = args.sample
restrictions = args.restrict
if 'gyroid' in args.struct:
gyroid = True
else:
gyroid = False
if 'schwarz' in args.struct:
schwarz = True
else:
schwarz = False
if 'primitive' in args.struct:
primitive = True
else:
primitive = False
# Some hard coded parameters to use in all distributions
n = 100 # grid size for discretized structure
box = 9.4 # box size in nm
period = box # period of the minimal surface in nm
struct_tol = 0.01 # tolerance for locating discretized points on the surface
guess = 4.6 # initial guess for the numerical solvers --> corresponds to the bilayer distance + expected pore size from MD and experiment
# random.seed(123) # uncomment if you want to set a random seed for reproducibility
##################################################################################################################
####################################### FUNCTIONS FOR CALCULATIONS ###############################################
##################################################################################################################
# Define the triply periodic minimal surface functions and their gradients
def SchwarzD(X, period):
N = 2*np.pi/period
a = np.sin(N*X[0]) * np.sin(N*X[1]) * np.sin(N*X[2])
b = np.sin(N*X[0]) * np.cos(N*X[1]) * np.cos(N*X[2])
c = np.cos(N*X[0]) * np.sin(N*X[1]) * np.cos(N*X[2])
d = np.cos(N*X[0]) * np.cos(N*X[1]) * np.sin(N*X[2])
return a + b + c + d
def Gyroid(X,period):
N = 2*np.pi/period
a = np.sin(N*X[0]) * np.cos(N*X[1])
b = np.sin(N*X[1]) * np.cos(N*X[2])
c = np.sin(N*X[2]) * np.cos(N*X[0])
return a + b + c
def SchwarzD_grad(v,period):
x = v[0]; y = v[1]; z = v[2]
N = 2*np.pi / period
a = N*np.cos(N*x)*np.sin(N*y)*np.sin(N*z) + N*np.cos(N*x)*np.cos(N*y)*np.cos(N*z) - N*np.sin(N*x)*np.sin(N*y)*np.cos(N*z) - N*np.sin(N*x)*np.cos(N*y)*np.sin(N*z)
b = N*np.sin(N*x)*np.cos(N*y)*np.sin(N*z) - N*np.sin(N*x)*np.sin(N*y)*np.cos(N*z) + N*np.cos(N*x)*np.cos(N*y)*np.cos(N*z) - N*np.cos(N*x)*np.sin(N*y)*np.sin(N*z)
c = N*np.sin(N*x)*np.sin(N*y)*np.cos(N*z) - N*np.sin(N*x)*np.cos(N*y)*np.sin(N*z) - N*np.cos(N*x)*np.sin(N*y)*np.sin(N*z) + N*np.cos(N*x)*np.cos(N*y)*np.cos(N*z)
return np.array([a,b,c]) / np.linalg.norm(np.array([a,b,c]))
def Gyroid_grad(v,period):
x = v[0]; y = v[1]; z = v[2]
N = 2*np.pi / period
a = N*np.cos(N*x)*np.cos(N*y) - N*np.sin(N*x)*np.sin(N*z)
b = -N*np.sin(N*y)*np.sin(N*x) + N*np.cos(N*y)*np.cos(N*z)
c = -N*np.sin(N*y)*np.sin(N*z) + N*np.cos(N*z)*np.cos(N*x)
return np.array([a,b,c]) / np.linalg.norm(np.array([a,b,c]))
def Primitive(X, period):
N = 2*np.pi/period
a = np.cos(N*X[0]) + np.cos(N*X[1]) + np.cos(N*X[2])
return a
def Primitive_grad(v, period):
x = v[0]; y = v[1]; z = v[2]
N = 2*np.pi / period
a = -N*np.sin(N*x)
b = -N*np.sin(N*y)
c = -N*np.sin(N*z)
return np.array([a,b,c]) / np.linalg.norm(np.array([a,b,c]))
# Functions for solving the equations
def P_gyroid(t,X,period=9.4): # return point extended along the normal from gyroid surface
n = Gyroid_grad(X,period)
return X + t*n
def P_schwarz(t,X,period=9.4): # return point extended along the normal from schwarz surface
n = SchwarzD_grad(X,period)
return X + t*n
def P_primitive(t,X,period=9.4): # return point extended along the normal from primitive surface
n = Primitive_grad(X,period)
return X + t*n
# functions for numerical solver that outputs a function of the distance projected along normal
def Gyroid_eq(X,period=9.4):
n = Gyroid_grad(X,period)
N = 2*np.pi/period
return lambda t : np.sin(N * (X[0] + t*n[0])) * np.cos(N * (X[1] + t*n[1])) + np.sin(N * (X[1] + t*n[1])) * np.cos(N * (X[2] + t*n[2])) + np.sin(N * (X[2] + t*n[2])) * np.cos(N * (X[0] + t*n[0]))
def SchwarzD_eq(X,period=9.4):
n = SchwarzD_grad(X,period)
N = 2*np.pi/period
return lambda t : np.sin(N * (X[0] + t*n[0])) * np.sin(N * (X[1] + t*n[1])) * np.sin(N * (X[2] + t*n[2])) + np.sin(N * (X[0] + t*n[0])) * np.cos(N * (X[1] + t*n[1])) * np.cos(N * (X[2] + t*n[2])) + np.cos(N * (X[0] + t*n[0])) * np.sin(N * (X[1] + t*n[1])) * np.cos(N * (X[2] + t*n[2])) + np.cos(N * (X[0] + t*n[0])) * np.cos(N * (X[1] + t*n[1])) * np.sin(N * (X[2] + t*n[2]))
def Primitive_eq(X,period=9.4):
n = Primitive_grad(X,period)
N = 2*np.pi/period
return lambda t : np.cos(N * (X[0] + t*n[0])) + np.cos(N * (X[1] + t*n[1])) + np.cos(N * (X[2] + t*n[2]))
# Main function for generating the distance distributions
def surface2surface(structure,struct='gyroid',guess=4.5,box=9.4,period=9.4,sample=10,restrictions=True):
# some hard coded constants
short_dist_tol = 0.01
small_tol = 0.01
# intialize all variables
distribution = []
neg = []
small = []
big = []
good = []
# define necessary functions for the chosen structure
if struct == 'gyroid':
P = P_gyroid
solve_eq = Gyroid_eq
elif struct == 'schwarzD':
P = P_schwarz
solve_eq = SchwarzD_eq
elif struct == 'primitive':
P = P_primitive
solve_eq = Primitive_eq
# generate distribution of surface to surface distances
while len(distribution) < sample:
p = random.randint(0, structure.shape[0] - 1) # choose a random point on the discretized surface
point = structure[p,:]
# find the point actually on the surface
short_dist = fsolve(solve_eq(point,period), short_dist_tol)
new_point = P(short_dist, point, period=period)
# solve for the distance from the new point to another point on the minimal surface
sol = fsolve(solve_eq(new_point,period), guess)
if restrictions:
if abs(sol) < box and abs(sol) > small_tol: # only save reasonable values
distribution.append(abs(sol))
else:
distribution.append(sol) # save every value
# keep track of the abnormalities
if abs(sol) < box and abs(sol) > small_tol:
good.append(new_point)
if sol < 0 and abs(sol) > small_tol:
neg.append(new_point)
point2 = P(0.001,new_point,period=period)
sol2 = fsolve(solve_eq(point2,period), guess)
print('Point %s' %(new_point))
print('\tOriginal: %.4f' %(sol) )
print('\tResolved: %.4f' %(sol2) )
if abs(sol) < small_tol:
small.append(new_point)
if abs(sol) > box:
big.append(new_point)
print('\nReasonable solutions for %s: %d' %(struct, len(good)))
print('Negative solutions for %s: %d' %(struct, len(neg)))
print('Solutions < %s nm for %s: %d' %(small_tol, struct, len(small)))
print('Solutions outside the box for %s: %d' %(struct, len(big)))
return distribution
def brentq_solver(structure,struct='gyroid',box=9.4,period=9.4,sample=10):
# some hard coded constants
short_dist_tol = 0.01
small_tol = 0.01
upper = box
lower = small_tol
checked = False
# intialize all variables
distribution = []
neg = []
small = []
big = []
good = []
# define necessary functions for the chosen structure
if struct == 'gyroid':
P = P_gyroid
solve_eq = Gyroid_eq
elif struct == 'schwarzD':
P = P_schwarz
solve_eq = SchwarzD_eq
elif struct == 'primitive':
P = P_primitive
solve_eq = Primitive_eq
# generate distribution of surface to surface distances
while len(distribution) < sample:
if not checked:
p = random.randint(0, structure.shape[0] - 1) # choose a random point on the discretized surface
point = structure[p,:]
# find the point actually on the surface
short_dist = fsolve(solve_eq(point,period), short_dist_tol)
new_point = P(short_dist, point, period=period)
# solve for the distance from the new point to another point on the minimal surface
dt = 0.01
a = None; b = None
n_sol = False; p_sol = False
for t in np.arange(lower,upper,dt):
if t < -2*small_tol or t > 2*small_tol:
f = solve_eq(new_point, period=period)(t)
if f < 0:
a = t
n_sol = True
if f > 0:
b = t
p_sol = True
if n_sol and p_sol:
break
if not n_sol or not p_sol:
if not checked:
# print('Could not find a bracket for the solution... Changing the search range.')
lower = -box
upper = -small_tol
checked = True
else:
print('Could not find a bracket for the solution... Exiting.')
exit()
elif checked:
lower = small_tol
upper = box
checked = False
if not checked:
sol = brentq(solve_eq(new_point,period), a=a, b=b)
distribution.append(abs(sol)) # save every value
# keep track of the abnormalities
if abs(sol) < box and abs(sol) > small_tol:
good.append(new_point)
if sol < 0 and abs(sol) > small_tol:
neg.append(new_point)
if abs(sol) < small_tol:
small.append(new_point)
if abs(sol) > box:
big.append(new_point)
print('\nReasonable solutions for %s: %d' %(struct, len(good)))
print('Negative solutions for %s: %d' %(struct, len(neg)))
print('Solutions < %s nm for %s: %d' %(small_tol, struct, len(small)))
print('Solutions outside the box for %s: %d' %(struct, len(big)))
return distribution
##################################################################################################################
######################################### GENERATE DISTRIBUTIONS #################################################
##################################################################################################################
if gyroid:
# Generate the structure
x = np.linspace(0, box, n)
y = np.linspace(0, box, n)
z = np.linspace(0, box, n)
X = [x[:,None,None], y[None,:,None], z[None,None,:]]
C = Gyroid(X, period)
grid = np.zeros([n**3, 3])
count = 0
for i in range(n):
for j in range(n):
for k in range(n):
if -struct_tol < C[i,j,k] < struct_tol:
grid[count,:] = [x[i], y[j], z[k]]
count += 1
structure = grid[:count, :]
# Generate the distribution
# dist_gyroid = surface2surface(structure,struct='gyroid',guess=guess,box=box,period=period,sample=sample,restrictions=restrictions)
dist_gyroid = brentq_solver(structure,struct='gyroid',box=box,period=period,sample=sample)
hist_gyroid = pd.DataFrame(dist_gyroid,columns=['Gyroid'])
np.savetxt(args.output + '_gyroid_raw.txt', dist_gyroid, header='Gyroid pore-to-pore distances (nm)')
if schwarz:
# Generate the structure
x = np.linspace(0, box, n)
y = np.linspace(0, box, n)
z = np.linspace(0, box, n)
X = [x[:,None,None], y[None,:,None], z[None,None,:]]
C = SchwarzD(X,period)
grid = np.zeros([n**3, 3])
count = 0
for i in range(n):
for j in range(n):
for k in range(n):
if -struct_tol < C[i,j,k] < struct_tol:
grid[count,:] = [x[i], y[j], z[k]]
count += 1
structure = grid[:count, :]
# Generate the distribution
#dist_schwarzD = surface2surface(structure,struct='schwarzD',guess=guess,box=box,period=period,sample=sample,restrictions=restrictions)
dist_schwarzD = brentq_solver(structure,struct='schwarzD',box=box,period=period,sample=sample)
hist_schwarzD = pd.DataFrame(dist_schwarzD,columns=['SchwarzD'])
np.savetxt(args.output + '_schwarz_raw.txt', dist_schwarzD, header='SchwarzD pore-to-pore distances (nm)')
if primitive:
# Generate the structure
x = np.linspace(0, box, n)
y = np.linspace(0, box, n)
z = np.linspace(0, box, n)
X = [x[:,None,None], y[None,:,None], z[None,None,:]]
C = Primitive(X, period)
grid = np.zeros([n**3, 3])
count = 0
for i in range(n):
for j in range(n):
for k in range(n):
if -struct_tol < C[i,j,k] < struct_tol:
grid[count,:] = [x[i], y[j], z[k]]
count += 1
structure = grid[:count, :]
# Generate the distribution
# dist_primitive = surface2surface(structure,struct='primitive',guess=guess,box=box,period=period,sample=sample,restrictions=restrictions)
dist_primitive = brentq_solver(structure,struct='primitive',box=box,period=period,sample=sample)
hist_primitive = pd.DataFrame(dist_primitive,columns=['Primitive'])
np.savetxt(args.output + '_primitive_raw.txt', dist_primitive, header='Primitive pore-to-pore distances (nm)')
##################################################################################################################
######################################### PLOT DISTRIBUTIONS #####################################################
##################################################################################################################
# Plot histograms with matplotlib
print()
fig, ax = plt.subplots(1,1, figsize=(10,8))
if gyroid:
# No kernel density
# bins = np.linspace(0,10,50)
# ax.hist(hist_gyroid['Gyroid'], bins=bins, alpha=0.5, label='Gyroid', density=True)
# Manual bandwidth choice with sklearn
# X_plot = np.linspace(0,10,1000)
# reshaped = np.array(hist_gyroid['Gyroid']).reshape(-1,1)
# kde = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(reshaped)
# log_dens = kde.score_samples(X_plot.reshape(-1,1))
# ax.plot(X_plot, np.exp(log_dens), label='Gyroid')
# K-fold cross validation for bandwidth choice with sklearn
X_plot = np.linspace(0,10,1000)
reshaped = np.array(hist_gyroid['Gyroid']).reshape(-1,1)
bandwidths = 10 ** np.linspace(-1, 1, 100)
grid = GridSearchCV(KernelDensity(kernel='gaussian'),
{'bandwidth': bandwidths},
cv=KFold(n_splits=10))
grid.fit(reshaped)
bw = grid.best_params_['bandwidth']
print('Best bandwidth for gyroid:', bw)
kde = KernelDensity(kernel="gaussian", bandwidth=bw).fit(reshaped)
log_dens = kde.score_samples(X_plot.reshape(-1,1))
ax.plot(X_plot, np.exp(log_dens), label='Gyroid')
# Save data
header = 'Geometric sampling of pore-to-pore distances for the Gyroid phase'
np.savetxt(args.output + '_gyroid.txt', np.array([X_plot, np.exp(log_dens)]), header=header)
# Improved Sheather Jones bandwidth choice with KDEpy
# reshaped = np.array(hist_gyroid['Gyroid']).reshape(-1,1)
# x, y = FFTKDE(kernel='gaussian', bw='ISJ').fit(reshaped).evaluate()
# ax.plot(x, y, label='Gyroid')
if schwarz:
# No kernel density
# bins = np.linspace(0,10,50)
# ax.hist(hist_schwarzD['SchwarzD'], bins=bins,
# alpha=0.5, label='Schwarz Diamond')
# Manual bandwidth choice with sklearn
# X_plot = np.linspace(0,10,1000)
# reshaped = np.array(hist_schwarzD['SchwarzD']).reshape(-1,1)
# kde = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(reshaped)
# log_dens = kde.score_samples(X_plot.reshape(-1,1))
# ax.plot(X_plot, np.exp(log_dens), label='Schwarz Diamond')
# K-fold cross validation for bandwidth choice with sklearn
X_plot = np.linspace(0,10,1000)
reshaped = np.array(hist_schwarzD['SchwarzD']).reshape(-1,1)
bandwidths = 10 ** np.linspace(-1, 1, 100)
grid = GridSearchCV(KernelDensity(kernel='gaussian'),
{'bandwidth': bandwidths},
cv=KFold(n_splits=10))
grid.fit(reshaped)
bw = grid.best_params_['bandwidth']
print('Best bandwidth for schwarzD:', bw)
kde = KernelDensity(kernel="gaussian", bandwidth=bw).fit(reshaped)
log_dens = kde.score_samples(X_plot.reshape(-1,1))
ax.plot(X_plot, np.exp(log_dens), label='SchwarzD')
# Save data
header = 'Geometric sampling of pore-to-pore distances for the Schwarz Diamond phase'
np.savetxt(args.output + '_schwarz.txt', np.array([X_plot, np.exp(log_dens)]), header=header)
# Improved Sheather Jones bandwidth choice with KDEpy
# reshaped = np.array(hist_schwarzD['SchwarzD']).reshape(-1,1)
# x, y = FFTKDE(kernel='gaussian', bw='ISJ').fit(reshaped).evaluate()
# ax.plot(x, y, label='SchwarzD')
if primitive:
# No kernel density
# bins = np.linspace(0,10,50)
# ax.hist(hist_primitive['Primitive'], bins=bins,
# alpha=0.5, label='Primitive')
# Manual bandwidth choice with sklearn
# X_plot = np.linspace(0,10,1000)
# reshaped = np.array(hist_primitive['Primitive']).reshape(-1,1)
# kde = KernelDensity(kernel="gaussian", bandwidth=0.75).fit(reshaped)
# log_dens = kde.score_samples(X_plot.reshape(-1,1))
# ax.plot(X_plot, np.exp(log_dens), label='Primitive')
# K-fold cross validation for bandwidth choice with sklearn
X_plot = np.linspace(0,10,1000)
reshaped = np.array(hist_primitive['Primitive']).reshape(-1,1)
bandwidths = 10 ** np.linspace(-1, 1, 100)
grid = GridSearchCV(KernelDensity(kernel='gaussian'),
{'bandwidth': bandwidths},
cv=KFold(n_splits=10))
grid.fit(reshaped)
bw = grid.best_params_['bandwidth']
print('Best bandwidth for primitive:', bw)
kde = KernelDensity(kernel="gaussian", bandwidth=bw).fit(reshaped)
log_dens = kde.score_samples(X_plot.reshape(-1,1))
ax.plot(X_plot, np.exp(log_dens), label='Primitive')
# Save data
header = 'Geometric sampling of pore-to-pore distances for the Primitive phase'
np.savetxt(args.output + '_primitive.txt', np.array([X_plot, np.exp(log_dens)]), header=header)
# Improved Sheather Jones bandwidth choice with KDEpy
# reshaped = np.array(hist_primitive['Primitive']).reshape(-1,1)
# x, y = FFTKDE(kernel='gaussian', bw='ISJ').fit(reshaped).evaluate()
# ax.plot(x, y, label='Primitive')
# Add the bilayer thickness + pore size line
ax.axvline(4.6, color='black', linestyle='dashed', label='Expected pore-to-pore distance')
ax.axvspan(4.6 - 0.2, 4.6 + 0.2, color='gray', alpha=0.5)
# Some formatting
ax.set_xlim(0,10)
ax.set_xticks(np.arange(0,11,1))
# ax.set_ylim(0,0.5)
ax.set_xlabel('distance (nm)',fontsize='large')
ax.set_ylabel('probability density',fontsize='large')
ax.legend(fontsize='x-large',loc=1)
title = 'Theoretical pore center to pore center distances for BCC structures'
# ax.set_title(title)
plt.show()
# fig.savefig(args.output + '.png')