-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
executable file
·288 lines (240 loc) · 14.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from __future__ import print_function
import argparse
import torch
import os
import pandas as pd
from datasets.dataset_generic import Generic_MIL_Dataset
from utils.eval_utils import eval
from datasets.dataset_h5 import Dataset_All_Bags
from functools import partial
from ray import tune
from ray.air.config import RunConfig
import ray
import cProfile, pstats
# Evaluation settings
parser = argparse.ArgumentParser(description='CLAM Evaluation Script')
## Folders
parser.add_argument('--data_root_dir', type=str, default=None,help='directory containing features folders')
parser.add_argument('--features_folder', type=str, default=None,help='folder within data_root_dir containing the features - must contain pt_files/h5_files subfolder')
parser.add_argument('--coords_path', type=str, default=None,help='path to coords pt files if needed')
parser.add_argument('--csv_path', type=str, default=None, help='path to dataset_csv file')
parser.add_argument('--models_exp_code', type=str, default=None,help='experiment code to load trained models (directory under results_dir containing model checkpoints')
parser.add_argument('--save_exp_code', type=str, default=None,help='experiment code to save eval results')
## Model settings
parser.add_argument('--model_type', type=str, choices=['clam_sb', 'clam_mb', 'mil'], default='clam_sb', help='type of model (default: clam_sb)')
parser.add_argument('--model_size', type=str, choices=['tinier_resnet18','tinier2_resnet18','tiny_resnet18','smaller','small_resnet18','large_resnet18','mega_resnet18','tinier','tiny128','tiny','small', 'big','hipt_mega_tiny','hipt_mega_small','hipt_mega_big','hipt_mega_mega','hipt_const','hipt_smallest','hipt_small','hipt_medium','hipt_big','hipt_smaller'], default='small', help='size of model (default: small)')
parser.add_argument('--task', type=str, choices=['ovarian_5class','ovarian_1vsall','nsclc','treatment','malignancy'])
parser.add_argument('--drop_out', type=float, default=0.25, help='dropout p=0.25')
parser.add_argument('--bag_loss', type=str, choices=['ce', 'balanced_ce'], default='ce',
help='slide-level classification loss function (default: ce)')
## Data settings
parser.add_argument('--seed', type=int, default=1,help='random seed for reproducible experiment (default: 1)')
parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)')
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
parser.add_argument('--fold', type=int, default=-1, help='single fold to evaluate')
parser.add_argument('--split', type=str, choices=['train', 'val', 'test', 'all'], default='test')
parser.add_argument('--split_dir', type=str, default=None,help='splits directory, if using custom splits other than what matches the task (default: None)')
parser.add_argument('--results_dir', type=str, default='./results',help='relative path to results folder, i.e. the directory containing models_exp_code relative to project root (default: ./results)')
## On-line feature extraction options (disregard if using pre-extracted features)
parser.add_argument('--eval_features',default=False, action='store_true',help='extract features during sampling')
parser.add_argument('--pretraining_dataset',type=str,choices=['ImageNet','Histo'],default='ImageNet')
## missing --model_architecture
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--data_h5_dir', type=str, default=None)
parser.add_argument('--data_slide_dir', type=str, default=None)
parser.add_argument('--slide_ext', type=str, default= '.svs')
parser.add_argument('--custom_downsample', type=int, default=1)
parser.add_argument('--target_patch_size', type=int, default=-1)
## Old sampling options - developed for https://github.com/scjjb/DRAS-MIL but not used for a while, now just using max_patches_per_slide during training and no sampling during evaluation.
parser.add_argument('--sampling', action='store_true', default=False, help='sampling for faster evaluation')
parser.add_argument('--sampling_type', type=str, choices=['spatial','textural'],default='spatial',help='type of sampling to use')
parser.add_argument('--samples_per_iteration', type=int, default=100, help='number of patches to sample per sampling iteration')
parser.add_argument('--resampling_iterations', type=int, default=10, help='number of resampling iterations (not including the initial sample)')
parser.add_argument('--sampling_random', type=float, default=0.2, help='proportion of samples which are completely random per iteration')
parser.add_argument('--sampling_random_delta',type=float, default=0.02, help='reduction in sampling_random per iteration')
parser.add_argument('--sampling_neighbors', type=int, default=20, help='number of nearest neighbors to consider when resampling')
parser.add_argument('--sampling_neighbors_delta', type=int, default=0, help='reduction in number of nearest neighbors per iteration')
parser.add_argument('--texture_model',type=str, choices=['resnet50','levit_128s'], default='resnet50',help='model to use for feature extraction in textural sampling')
parser.add_argument('--plot_dir', type=str, default="/",help='sampling plots folder')
parser.add_argument('--plot_sampling',action='store_true',default=False,help='Save an image showing the samples taken at each at last iteration')
parser.add_argument('--plot_sampling_gif',action='store_true',default=False,help='Save a gif showing the evolution of the samples taken')
parser.add_argument('--plot_weighting',action='store_true',default=False,help='Save an image showing each patches sample weighting in the final iteration')
parser.add_argument('--plot_weighting_gif',action='store_true',default=False,help='Save a gif showing the evolution of sample weighting')
parser.add_argument('--use_all_samples',action='store_true',default=False,help='Use every previous sample for final iteration')
parser.add_argument('--final_sample_size',type=int,default=100,help='number of patches for final iteration sample')
parser.add_argument('--retain_best_samples',type=int,default=100,help='number of highest-attention previous samples to retain for final iteration sample')
parser.add_argument('--initial_grid_sample',action='store_true',default=False,help='Take the initial sample to be spaced out in a grid')
parser.add_argument('--sampling_update',type=str,choices=['average','max','newest'],default='average',help='How sampling weights are assigned when patches have multiple weight scores')
parser.add_argument('--weight_smoothing',type=float,default=0.15,help='Power applied to attention scores to generate sampling weights')
parser.add_argument('--fully_random',action='store_true', default=False, help='Take entirely random samples (no active sampling)')
## Tuning options
parser.add_argument('--tuning', action='store_true', default=False, help='run hyperparameter tuning')
parser.add_argument('--tuning_output_file',type=str,default="tuning_results/tuning_output.csv",help="where to save tuning outputs")
parser.add_argument('--num_tuning_experiments',type=int,default=100,help="number of tuning experiments")
parser.add_argument('--same_slide_repeats',type=int,default=1,help='number of times to repeat evaluating each slide to help account for randomness')
parser.add_argument('--hardware',type=str, choices=['DGX','PC'], default='DGX',help='sets amount of CPU and GPU to use per experiment')
## Developer Settings
parser.add_argument('--micro_average', action='store_true', default=False,
help='use micro_average instead of macro_avearge for multiclass AUC')
parser.add_argument('--profile', action='store_true', default=False,
help='show profile of longest running code sections')
parser.add_argument('--profile_rows', type=int, default=10, help='number of rows to show from profiler (requires --profile to show any)')
parser.add_argument('--cpu_only',action='store_true',default=False,help='Use CPU only')
args = parser.parse_args()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.cpu_only:
torch.cuda.is_available = lambda : False
device=torch.device("cpu")
args.save_dir = os.path.join(args.results_dir,'eval_results', 'EVAL_' + str(args.save_exp_code))
args.models_dir = os.path.join(args.results_dir, str(args.models_exp_code))
os.makedirs(args.save_dir, exist_ok=True)
if args.split_dir is None:
args.split_dir = args.models_dir
assert os.path.isdir(args.models_dir)
assert os.path.isdir(args.split_dir)
settings = {'task': args.task,
'split': args.split,
'save_dir': args.save_dir,
'models_dir': args.models_dir,
'model_type': args.model_type,
'drop_out': args.drop_out,
'model_size': args.model_size}
with open(args.save_dir + '/eval_experiment_{}.txt'.format(args.save_exp_code), 'w') as f:
print(settings, file=f)
f.close()
print(settings)
if args.task == 'ovarian_5class':
args.n_classes=5
args.label_dict = {'high_grade':0,'low_grade':1,'clear_cell':2,'endometrioid':3,'mucinous':4}
elif args.task == 'ovarian_1vsall':
args.n_classes=2
args.label_dict = {'high_grade':0,'low_grade':1,'clear_cell':1,'endometrioid':1,'mucinous':1}
elif args.task == 'nsclc':
args.n_classes=2
args.label_dict = {'luad':0,'lusc':1}
elif args.task =='treatment':
args.n_classes=2
args.label_dict = {'invalid':0,'effective':1}
elif args.task == 'malignancy':
args.n_classes=2
args.label_dict = {'benign':0,'metastasis':1}
else:
raise NotImplementedError
dataset = Generic_MIL_Dataset(csv_path = args.csv_path,
data_dir = os.path.join(args.data_root_dir, args.features_folder),
coords_path = args.coords_path,
shuffle = False,
print_info = True,
label_dict = args.label_dict,
patient_strat=False,
data_h5_dir=args.data_h5_dir,
data_slide_dir=args.data_slide_dir,
slide_ext=args.slide_ext,
pretrained=True,
custom_downsample=args.custom_downsample,
target_patch_size=args.target_patch_size,
model_type = args.model_type,
batch_size = args.batch_size,
ignore=[])
if args.k_start == -1:
start = 0
else:
start = args.k_start
if args.k_end == -1:
end = args.k
else:
end = args.k_end
if args.fold == -1:
folds = range(start, end)
else:
folds = range(args.fold, args.fold+1)
ckpt_paths = [os.path.join(args.models_dir, 's_{}_checkpoint.pt'.format(fold)) for fold in folds]
datasets_id = {'train': 0, 'val': 1, 'test': 2, 'all': -1}
def main():
all_f1 = []
all_auc = []
all_bal_acc = []
all_loss = []
if args.tuning:
ray.init(num_gpus=1)
if args.hardware=='DGX':
hardware={"cpu":10,"gpu":0.07}
else:
hardware={"cpu":2,"gpu":0.5}
search_space = {
"weight_smoothing": tune.loguniform(0.2,0.20000001),
"resampling_iterations": tune.choice([2,4,6,8,10,12,16]),
"sampling_neighbors": tune.choice([4,8,16,32,48,64]),
"sampling_random": tune.uniform(0.00,0.75),
"sampling_random_delta": tune.loguniform(0.0001,0.5)
}
scheduler = tune.schedulers.ASHAScheduler(
metric="auc",
mode="max",
grace_period=1,
reduction_factor=3,
max_t=1)
reporter = tune.CLIReporter(
metric_columns=["auc", "training_iteration"],
max_report_frequency=5,
max_progress_rows=20,
metric="auc",
mode="max",
sort_by_metric=True)
for ckpt_idx in range(len(ckpt_paths)):
if args.eval_features:
split_dataset=Dataset_All_Bags(args.csv_path)
else:
if datasets_id[args.split] < 0:
split_dataset = dataset
else:
csv_path = '{}/splits_{}.csv'.format(args.split_dir, folds[ckpt_idx])
datasets = dataset.return_splits(from_id=False, csv_path=csv_path)
split_dataset = datasets[datasets_id[args.split]]
if args.tuning:
#if args.sampling:
tuner = tune.Tuner(tune.with_resources(partial(eval,dataset=split_dataset,args=args,ckpt_path=ckpt_paths[ckpt_idx]),hardware),param_space=search_space, run_config=RunConfig(name="test_run", progress_reporter=reporter),tune_config=tune.TuneConfig(scheduler=scheduler,num_samples=args.num_tuning_experiments))
results = tuner.fit()
results_df=results.get_dataframe()
results_df.to_csv(args.tuning_output_file,index=False)
best_trial = results.get_best_result("auc", "max","all")
print("best trial:", best_trial)
print("Best trial config: {}".format(best_trial.config))
print("Best trial final auc: {}".format(best_trial.metrics["auc"]))
print("Best trial final acuracy: {}".format(best_trial.metrics["accuracy"]))
else:
class_counts = class_counts_train=dataset.count_by_class(csv_path = '{}/splits_{}.csv'.format(args.split_dir, folds[ckpt_idx]))
test_error, df, loss, f1, auc, bal_acc = eval(None,split_dataset, args, ckpt_paths[ckpt_idx], class_counts=class_counts)
all_f1.append(f1)
print("f1 per fold", all_f1)
all_auc.append(auc)
print("auc per fold", all_auc)
all_bal_acc.append(bal_acc)
print("bal_acc per fold", all_bal_acc)
all_loss.append(loss)
print("loss per fold", all_loss)
if not args.eval_features:
df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False)
if not args.tuning:
final_df = pd.DataFrame({'folds': folds, 'test_f1': all_f1, 'test_auc': all_auc, 'test_bal_acc': all_bal_acc, 'loss': all_loss})
print(final_df)
if len(folds) != args.k:
save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1])
else:
save_name = 'summary.csv'
final_df.to_csv(os.path.join(args.save_dir, save_name))
if __name__ == "__main__":
if args.profile:
## import is here because it doesn't work on all systems
#from streamlit import legacy_caching as caching
#caching.clear_cache()
profiler = cProfile.Profile()
profiler.enable()
main()
print("max gpu mem usage:",torch.cuda.max_memory_allocated())
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumtime')
stats.print_stats(args.profile_rows)
else:
main()