-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathTailrecPre.thy
121 lines (105 loc) · 3.65 KB
/
TailrecPre.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory TailrecPre
imports
"Word_Lib.WordSetup"
"Lib.Lib"
begin
definition
"tailrec_pre (f1 :: 'a \<Rightarrow> 'a) guard precondition (x::'a) \<equiv>
(\<forall>k. (\<forall>m. m < k \<longrightarrow> guard ((f1 ^^ m) x)) \<longrightarrow> precondition ((f1 ^^ k) x)) \<and>
(\<exists>n. \<not> guard ((f1 ^^ n) x))"
definition
"short_tailrec_pre (f :: 'a \<Rightarrow> ('a + 'b) \<times> bool) \<equiv>
tailrec_pre (theLeft o fst o f) (isLeft o fst o f) (snd o f)"
partial_function (tailrec)
tailrec :: "('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b"
where
"tailrec f1 f2 g x = (if g x then tailrec f1 f2 g (f1 x) else f2 x)"
lemma tailrec_steps:
"g x \<Longrightarrow> tailrec f1 f2 g x = tailrec f1 f2 g (f1 x)"
"\<not> g x \<Longrightarrow> tailrec f1 f2 g x = f2 x"
by (simp_all add: tailrec.simps cong: if_weak_cong split del: if_split)
definition
"short_tailrec (f :: 'a \<Rightarrow> ('a + 'b) \<times> bool) \<equiv>
tailrec (theLeft o fst o f) (theRight o fst o f) (isLeft o fst o f)"
definition
"short_tailrec_pair stp v = (short_tailrec_pre stp v, short_tailrec stp v)"
lemma tailrec_pre_lemma:
"!f1 g p x. tailrec_pre f1 g p (x::'a) = (p x \<and> (g x \<longrightarrow> tailrec_pre f1 g p (f1 x)))"
apply (clarsimp simp add: tailrec_pre_def)
apply (rule iffI)
apply (rule conjI)
apply auto[1]
apply clarsimp
apply (rule conjI[rotated])
apply (case_tac n)
apply simp
apply (clarsimp simp: funpow_swap1)
apply auto[1]
apply clarsimp
apply (drule_tac x="Suc n" for n in spec, simp add: funpow_swap1)
apply (erule mp)
apply clarsimp
apply (case_tac m, simp_all add: funpow_swap1)[1]
apply (case_tac "g x")
apply clarsimp
apply (rule conjI)
apply clarsimp
apply (case_tac k)
apply auto[1]
apply (simp_all add: funpow_swap1)[1]
apply (erule allE, erule impE)
prefer 2
apply assumption
apply (rule allI)
apply (rule impI)
apply (drule_tac x="Suc m" in spec, simp_all add: funpow_swap1)
apply (rule_tac x="Suc n" in exI)
apply (simp add: funpow_swap1)
apply (rule conjI)
prefer 2
apply (rule_tac x="0" in exI)
apply auto[1]
apply (rule allI)
apply (rule impI)
apply (case_tac k)
apply auto
done
lemma tailrec_pre_lemmata:
"g x \<Longrightarrow> tailrec_pre f1 g p (x::'a) = (p x \<and> tailrec_pre f1 g p (f1 x))"
"\<not> g x \<Longrightarrow> tailrec_pre f1 g p (x::'a) = p x"
by (metis tailrec_pre_lemma)+
theorem short_tailrec_thm:
"\<forall>f x. short_tailrec f x = (if isLeft (fst (f x))
then short_tailrec f (theLeft (fst (f x)))
else theRight (fst (f x))) \<and>
(short_tailrec_pre f x = (snd (f x)
\<and> (isLeft (fst (f x)) \<longrightarrow> short_tailrec_pre f (theLeft (fst (f x))))))"
apply (clarsimp simp add: short_tailrec_pre_def short_tailrec_def)
apply (simp add: tailrec_pre_lemmata tailrec_steps)
done
lemma short_tailrec_pair_single_step:
"\<forall>v. \<not> isLeft (fst (f v))
\<Longrightarrow> short_tailrec_pair f = (\<lambda>v. let (rv, b) = (f v) in (b, theRight rv))"
apply (rule ext)
apply (simp add: short_tailrec_pair_def split_def Let_def)
apply (simp add: short_tailrec_thm cong: imp_cong[OF _ refl] if_weak_cong)
done
lemma eq_true_imp:
"(x == Trueprop True) ==> PROP x"
apply auto
done
lemma forall_true:
"(!x. True) = True"
apply auto
done
lemmas split_thm = split_conv
definition
line_number :: "word32 \<Rightarrow> bool"
where
"line_number n \<equiv> True"
end