-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsv_timestamp_analysis.py
356 lines (306 loc) · 12.6 KB
/
sv_timestamp_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (C) 2024, RTE (http://www.rte-france.com)
# Copyright (C) 2024 Savoir-faire Linux, Inc.
# SPDX-License-Identifier: Apache-2.0
import os
import argparse
import matplotlib.pyplot as plt
import textwrap
import numpy as np
import pandas as pd
GREEN_COLOR = "#90EE90"
RED_COLOR = "#F08080"
def extract_sv(sv_file_path, streams):
stream_number = 0
with open(f"{sv_file_path}", "r", encoding="utf-8") as sv_file:
sv_content = sv_file.read().splitlines()
sv_id = np.array([str(item.split(":")[1]) for item in sv_content])
stream_names = np.unique(sv_id)
sv = [i for i in range(len(streams))]
sv_it = np.array([str(item.split(":")[0]) for item in sv_content])
sv_cnt = np.array([int(item.split(":")[2]) for item in sv_content])
sv_timestamps = np.array([int(item.split(":")[3]) for item in sv_content])
for stream in streams:
try:
id_occurrences = np.where(sv_id == stream_names[stream])
except IndexError as e:
print(f"Fatal: couldn't extract SV streams; is the -S argument correct? ({e})")
exit(1)
sv_it_occurrences = sv_it[id_occurrences]
sv_cnt_occurrences = sv_cnt[id_occurrences]
sv_timestamps_occurrences = sv_timestamps[id_occurrences]
sv[stream_number] = [sv_it_occurrences, sv_cnt_occurrences, sv_timestamps_occurrences]
stream_number += 1
return sv, stream_names
def verify_sv_logs_consistency(sv_data_1, sv_data_2, sv_filename_1, sv_filename_2):
# Verify that both sv files are comparables. It means:
# - contains the same number of streams
# - contains the same number of iterations
# If they do not have the same number of iterations, it can mean :
# - packets reordering
# - too many SV lost.
# In both cases, the latency cannot be computed, because a received SV cannot
# be linked correctly to a published SV.
# Check for same number of streams
if len(sv_data_1) != len(sv_data_2):
raise ValueError(
f"{sv_filename_1} has {len(sv_data_1)} stream, but {sv_filename_2} has {len(sv_data_2)}'"
)
# Check last iteration counter
for stream in range(0, len(sv_data_1)):
# Compare last value of the iteration columns
if sv_data_1[stream][0][-1] != sv_data_2[stream][0][-1]:
raise ValueError(
f"{sv_filename_1} and {sv_filename_2} don't have the same number of iterations"
)
def handle_sv_drop(pub_stream, sub_stream):
# Compute the latency on a stream with sv lost
# All the magic remains in the pandas dataframe merge function using the
# inner method to combine tables. This function handles the missalignement
# between subscriber and publisher values.
# https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
columns = ["iteration", "counter", "time"]
pub_data = pd.DataFrame(pub_stream, index=columns).T
sub_data = pd.DataFrame(sub_stream, index=columns).T
merged_data = pd.merge(pub_data, sub_data, on=["iteration", "counter"], how="inner")
latencies = merged_data["time_y"] - merged_data["time_x"]
return np.array(latencies)
def compute_latency(pub_sv, sub_sv):
latencies = [[]] * len(pub_sv)
sv_drop = 0
for stream in range(0, len(pub_sv)):
pub_sv_stream = pub_sv[stream]
sub_sv_stream = sub_sv[stream]
sv_drop_stream = abs(len(pub_sv_stream[0]) - len(sub_sv_stream[0]))
sv_drop += sv_drop_stream
if sv_drop_stream > 0:
# if sv drop is detected on this stream, pandas will be used to
# reconstruct the link between data and compute the latency
# It will take additionnal times to convert from numpy to pandas,
# so this is only done when there is sv drop.
latencies[stream] = handle_sv_drop(pub_sv_stream, sub_sv_stream)
else:
latencies[stream] = sub_sv_stream[2] - pub_sv_stream[2]
return latencies, sv_drop
def compute_pacing(sv):
streams = len(sv)
pacing = [[0]] * len(sv)
for stream in range(0, streams):
pacing[stream] = np.diff(sv[stream][2])
return pacing
def compute_min(values):
return np.min(values) if values.size > 0 else None
def compute_max(values):
return np.max(values) if values.size > 0 else None
def compute_average(values):
return np.round(np.mean(values)) if values.size > 0 else None
def compute_neglat(values):
return np.count_nonzero(values < 0)
def save_latency_histogram(values, streams, stream_names, sub_name, output, threshold=0):
for stream, value in zip(streams, values):
plt.hist(value, bins=20, alpha=0.7)
plt.xlabel(f"Latency (us)")
plt.ylabel("Occurrences")
plt.yscale('log')
plt.title(f"{sub_name} SV stream {stream_names[stream]} latency histogram")
if threshold > 0:
plt.axvline(x=threshold, color='red', linestyle='dashed', linewidth=2, label=f'Limit ({threshold} us)')
plt.legend()
filename = f"histogram_{sub_name}_stream_{stream}_latency.png"
filepath = os.path.realpath(f"{output}/results/{filename}")
plt.savefig(filepath)
print(f"Histogram saved as {filename}.")
plt.close()
return filepath
def generate_adoc(pub, hyp, sub, streams, hyp_name, sub_name, output, max_latency_threshold, display_threshold):
if not os.path.exists(f'{output}/results'):
os.makedirs(f'{output}/results')
with open(f"{output}/results/latency_tests.adoc", "w", encoding="utf-8") as adoc_file:
subcriber_lines = textwrap.dedent(
"""
===== Subscriber {_subscriber_name_}
{{set:cellbgcolor!}}
|===
|IEC61850 Sampled Value Stream |Minimum latency |Maximum latency |Average latency
|{_stream_id_} |{_minlat_} us |{_maxlat_} us |{_avglat_} us
|===
image::./histogram_{_subscriber_name_}_stream_{_stream_}_latency.png[]
|===
|IEC61850 Sampled Value Stream |Minimum pacing |Maximum pacing |Average pacing
|{_stream_id_} |{_minpace_} us |{_maxpace_} us |{_avgpace_} us
|===
"""
)
hypervisor_lines = textwrap.dedent(
"""
===== Hypervisor {_hypervisor_name_}
{{set:cellbgcolor!}}
|===
|IEC61850 Sampled Value Stream |Minimum latency |Maximum latency |Average latency
|{_stream_id_} |{_minlat_} us |{_maxlat_} us |{_avglat_} us
|===
image::./histogram_{_hypervisor_name_}_stream_{_stream_}_latency.png[]
|===
|IEC61850 Sampled Value Stream |Minimum pacing |Maximum pacing |Average pacing
|{_stream_id_} |{_minpace_} us |{_maxpace_} us |{_avgpace_} us
|===
"""
)
pass_line = textwrap.dedent(
"""
[cols="3,1",frame=all, grid=all]
|===
|Max latency < {_limit_} us
|{{set:cellbgcolor:{_color_}}}{_result_}
|{{set:cellbgcolor:transparent}}SV dropped|{_sv_dropped_}
|===
"""
)
pub_sv, _ = extract_sv(pub, streams)
sub_sv, sub_stream_names = extract_sv(sub, streams)
verify_sv_logs_consistency(pub_sv, sub_sv, pub, sub)
latencies, total_sv_drop = compute_latency(pub_sv, sub_sv)
sub_pacing = compute_pacing(sub_sv)
if display_threshold:
save_latency_histogram(latencies, streams, sub_stream_names, sub_name, output, max_latency_threshold)
else:
save_latency_histogram(latencies, streams, sub_stream_names, sub_name, output)
maxlat= compute_max(latencies[0])
adoc_file.write(
subcriber_lines.format(
_output_=output,
_subscriber_name_=sub_name,
_stream_id_= sub_stream_names[0],
_stream_ = streams[0],
_minlat_= compute_min(latencies[0]),
_maxlat_= maxlat,
_avglat_= compute_average(latencies[0]),
_minpace_= compute_min(sub_pacing[0]),
_maxpace_= compute_max(sub_pacing[0]),
_avgpace_= compute_average(sub_pacing[0]),
)
)
if hyp is not None:
hyp_sv, hyp_stream_names = extract_sv(hyp, streams)
verify_sv_logs_consistency(pub_sv, hyp_sv, pub, hyp)
hyp_latencies, total_sv_drop = compute_latency(pub_sv, hyp_sv)
hyp_pace = compute_pacing(hyp_sv)
adoc_file.write(
hypervisor_lines.format(
_output_=output,
_hypervisor_name_=hyp_name,
_stream_id_= hyp_stream_names[0],
_stream_ = streams[0],
_minlat_= compute_min(hyp_latencies[0]),
_maxlat_= maxlat,
_avglat_= compute_average(hyp_latencies[0]),
_minpace_= compute_min(hyp_pace[0]),
_maxpace_= compute_max(hyp_pace[0]),
_avgpace_= compute_average(hyp_pace[0]),
)
)
if maxlat < max_latency_threshold:
adoc_file.write(
pass_line.format(
_limit_=max_latency_threshold,
_result_="PASS",
_color_=GREEN_COLOR,
_sv_dropped_=total_sv_drop
)
)
else:
adoc_file.write(
pass_line.format(
_limit_=max_latency_threshold,
_result_="FAILED",
_color_=RED_COLOR,
_sv_dropped_=total_sv_drop
)
)
def parse_streams(value):
"""
Parses the `streams` argument to handle single values or ranges of values.
Example values:
- Single value: '0' or '3'
- Range of values: '0..3'
"""
if ".." in value:
start, end = value.split("..")
try:
start, end = int(start), int(end)
if start > end:
raise argparse.ArgumentTypeError(
f"Fatal: invalid stream range: {value}. Start of range must be less than end."
)
return list(range(start, end + 1))
except ValueError:
raise argparse.ArgumentTypeError(
f"Fatal: invalid stream format: {value}. Use 'start..end' format."
)
else:
try:
return [int(value)]
except ValueError:
raise argparse.ArgumentTypeError(
f"Fatal: invalid stream stream value: {value}. Must be an integer or a range."
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Compute latencies from sv_timestamp_logger and generate latency tests report in AsciiDoc format"
)
parser.add_argument(
"--pub", "-p", required=True, type=str, help="SV publisher file"
)
parser.add_argument("--hyp", "-y", type=str, help="SV hypervisor file")
parser.add_argument("--sub", "-s", type=str, help="SV subscriber file")
parser.add_argument(
"--hypervisor_name",
type=str,
help="Hypervisor name that will appear in report and graph. If not set, it will be the name of SV hypervisor file",
)
parser.add_argument(
"--subscriber_name",
type=str,
help="Subscriber name that will appear in report and graph. If not set, it will be the name of SV subscriber file",
)
parser.add_argument(
"--stream",
"-S",
default=[0],
type=parse_streams,
help="Streams to consider. If not set, only stream 0 will be considered",
)
parser.add_argument(
"--output",
"-o",
default=".",
type=str,
help="Output directory for the generated files.",
)
parser.add_argument(
"--max_latency", "-m", default=100, type=int, help="Maximum latency threshold"
)
parser.add_argument(
"--display_max_latency",
action="store_true",
help="Display max latency threshold on histograms if set"
)
args = parser.parse_args()
if not args.hypervisor_name:
hyp_name=args.hyp
else:
hyp_name=args.hypervisor_name
if not args.subscriber_name:
sub_name=args.sub
else:
sub_name=args.subscriber_name
generate_adoc(
args.pub,
args.hyp,
args.sub,
args.stream,
hyp_name,
sub_name,
args.output,
args.max_latency,
args.display_max_latency,
)