forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport.cpp
613 lines (561 loc) · 22.1 KB
/
import.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#include <ATen/core/interned_strings.h>
#include <caffe2/serialize/file_adapter.h>
#include <caffe2/serialize/in_memory_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <caffe2/serialize/istream_adapter.h>
#include <caffe2/serialize/read_adapter_interface.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <ATen/core/functional.h>
#include <ATen/core/ivalue_inl.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/ir/graph_utils.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/mobile/file_format.h>
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
#include <torch/csrc/jit/operator_upgraders/upgraders_entry.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <ATen/ATen.h>
#include <fmt/format.h>
#include <string>
#include <utility>
#include <vector>
namespace torch::jit {
using caffe2::serialize::MemoryReadAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
static void postSetStateValidate(const IValue& v) {
auto obj = v.toObject();
const auto& objType = obj->type();
for (const auto i : c10::irange(objType->numAttributes())) {
const auto& attrType = objType->getAttribute(i);
#ifndef STRIP_ERROR_MESSAGES
const auto& attrName = objType->getAttributeName(i);
#endif
const auto& slot = obj->getSlot(i);
// const auto attrType = objType->getAttribute(i);
// Verify that all the non-optional attributes have been initialized
// TODO: Issue #20497
if (attrType->kind() != TypeKind::UnionType &&
attrType->kind() != TypeKind::OptionalType &&
attrType->kind() != TypeKind::NoneType) {
TORCH_CHECK(
!slot.isNone(),
fmt::format(
"The field '{}' was left uninitialized after '__setstate__', "
"but expected a value of type '{}'",
attrName,
attrType->repr_str()));
}
}
}
// Decouple how to get obj from type. In this file it's dependent on
// Method.run() and graph executor, etc.
// For bytecode import we need to decouple these dependencies.
c10::intrusive_ptr<c10::ivalue::Object> ObjLoaderFunc(
const at::StrongTypePtr& type,
IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
size_t n = cls->numAttributes();
if (checkHasValidSetGetState(cls)) {
auto obj = c10::ivalue::Object::create(type, n);
// XXX: Do not optimize __setstate__, so that we don't try to
// specialize the class before it is initialized.
GraphOptimizerEnabledGuard guard(false);
Function& set_state = cls->getMethod("__setstate__");
// since we are in the middle of unpickling we might still have lists and
// dicts that do not have accurate tags (e.g. they report they are
// List[Any]). But we need to run __setstate__ which will check the input
// type and may access the tags. Since setstate has a known input type, we
// can correctly restore the tags now by apply the input type of set_state
// to the state object being passed.
// TODO: Remove once [serialization type tags] is landed
restoreAccurateTypeTags(
input, set_state.getSchema().arguments().at(1).type());
set_state({obj, input});
postSetStateValidate(obj);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
auto obj = c10::ivalue::Object::create(type, n);
for (const auto i : c10::irange(n)) {
obj->setSlot(i, dict.at(cls->getAttributeName(i)));
}
return obj;
}
}
namespace {
// This is a deserializer class which loads script modules from pt files.
// Content of the file is written using PyTorchStreamWriter, for details please
// check caffe2/serialize/inline_container.h.
// The module is saved in pickle. readArchive() is called to parse and construct
// the constant table and the script module.
class ScriptModuleDeserializer final {
public:
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
code_prefix_("code/"),
pickle_dir_prefix_(""),
tensor_dir_prefix_(""),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::string pickle_dir_prefix,
std::string tensor_dir_prefix,
std::shared_ptr<DeserializationStorageContext> storage_context)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
storage_context_(std::move(storage_context)),
code_prefix_(".data/ts_code/code/"),
pickle_dir_prefix_(std::move(pickle_dir_prefix)),
tensor_dir_prefix_(std::move(tensor_dir_prefix)),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
Module deserialize(
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes = false);
private:
IValue readArchive(const std::string& archive_name);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::shared_ptr<PyTorchStreamReader> reader_;
std::shared_ptr<DeserializationStorageContext> storage_context_;
std::optional<at::Device> device_;
std::vector<at::IValue> constants_table_;
std::string code_prefix_;
std::string pickle_dir_prefix_;
std::string tensor_dir_prefix_;
SourceImporter source_importer_;
};
IValue ScriptModuleDeserializer::readArchive(const std::string& archive_name) {
auto type_resolver = [&](const c10::QualifiedName& qn) {
auto cls = source_importer_.loadType(qn);
return c10::StrongTypePtr(compilation_unit_, std::move(cls));
};
return readArchiveAndTensors(
/*archive_name=*/archive_name,
/*pickle_prefix=*/pickle_dir_prefix_,
/*tensor_prefix=*/tensor_dir_prefix_,
type_resolver,
ObjLoaderFunc,
device_,
*reader_,
nullptr,
storage_context_);
}
void rewriteQuantizedConvForBC(const Module& module) {
const std::string& old_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
SubgraphRewriter rewriter;
static const std::vector<std::pair<std::string, std::string>>
patterns_and_replacements = {
{old_quantized_conv2d, new_quantized_conv2d},
{old_quantized_conv2d_relu, new_quantized_conv2d_relu},
{old_quantized_conv3d, new_quantized_conv3d},
{old_quantized_conv3d_relu, new_quantized_conv3d_relu},
};
for (const auto& item : patterns_and_replacements) {
rewriter.RegisterRewritePattern(item.first, item.second);
}
rewriter.runOnModule(module);
for (const Module& child : module.children()) {
rewriteQuantizedConvForBC(child);
}
}
Module ScriptModuleDeserializer::deserialize(
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes) {
// we populate the upgraders map before any load starts
populate_upgraders_graph_map();
C10_LOG_API_USAGE_ONCE("torch.jit.load");
device_ = device;
// Load extra files.
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
auto [meta_ptr, meta_size] = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
if (reader_->hasRecord("model.json") && code_prefix_ == "code/") {
TORCH_CHECK(false, "Legacy model format is not supported on mobile.");
}
auto tuple = readArchive("constants").toTuple();
for (auto constant : tuple->elements()) {
constants_table_.push_back(constant.toIValue());
}
auto m_ivalue = readArchive("data");
auto m = Module(m_ivalue.toObject());
rewriteQuantizedConvForBC(m);
// Checking for and loading saved traced inputs
if (restore_shapes && reader_->hasRecord("traced_inputs.pkl")) {
auto dict = readArchive("traced_inputs").toGenericDict();
for (const auto& entry : dict) {
auto inputs = entry.value().toList().vec();
auto g =
toGraphFunction(m.get_method(entry.key().toStringRef()).function())
.graph();
Stack stack(inputs.begin(), inputs.end());
// Added the module as the first input if we are missing
// an input as traced modules refer to self as an additional input
if (g->inputs().size() == stack.size() + 1) {
stack.insert(stack.begin(), m_ivalue);
}
setInputTensorTypes(*g, stack, /*complete=*/true);
PropagateInputShapes(g);
}
} else {
if (restore_shapes) {
TORCH_WARN("Cannot restore shapes as no traced inputs were stored");
}
}
c10::LogAPIUsageMetadata(
"torch.script.load.metadata",
{{"serialization_id", reader_->serializationId()}});
return m;
}
} // namespace
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
std::optional<at::Device> device,
bool load_debug_files) {
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), in, device, extra_files, load_debug_files);
}
static Module _load_jit_module_from_bytes(
const std::shared_ptr<char>& data,
size_t size,
std::shared_ptr<CompilationUnit> cu,
std::optional<c10::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes);
Module parse_and_initialize_jit_module(
const std::shared_ptr<char>& data,
size_t size,
ExtraFilesMap& extra_files,
std::optional<at::Device> device) {
populate_upgraders_graph_map();
ExtraFilesMap jit_files;
std::vector<IValue> jit_constants;
mobile::Module mobilem = parse_and_initialize_mobile_module_for_jit(
data.get(), size, jit_files, jit_constants, device, &extra_files);
Module m = jitModuleFromSourceAndConstants(
mobilem._ivalue(),
jit_files,
jit_constants,
static_cast<int32_t>(mobilem.bytecode_version()));
m.set_delete_memory(data);
return m;
}
Module load_jit_module_from_file(
const std::string& filename,
ExtraFilesMap& extra_files,
std::optional<at::Device> device) {
auto data = get_file_content(filename.c_str());
return parse_and_initialize_jit_module(
std::get<0>(data), std::get<1>(data), extra_files, device);
}
Module load_jit_module_from_stream(
std::istream& in,
ExtraFilesMap& extra_files,
std::optional<at::Device> device) {
auto data = get_stream_content(in);
return parse_and_initialize_jit_module(
std::get<0>(data), std::get<1>(data), extra_files, device);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files,
bool restore_shapes) {
in.seekg(0, in.beg);
// NOTE: Zipformat can be large files. So using stream version directly
// instead of reading the file all at once.
if (getFileFormat(in) != FileFormat::FlatbufferFileFormat) {
auto reader = std::make_unique<PyTorchStreamReader>(&in);
reader->setShouldLoadDebugSymbol(load_debug_files);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files, restore_shapes);
}
auto [data, size] = get_stream_content(in);
return _load_jit_module_from_bytes(
data, size, cu, device, extra_files, restore_shapes);
}
// For reading unified serialization format from torch.Package.
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::shared_ptr<DeserializationStorageContext> storage_context,
std::optional<at::Device> device,
const std::string& ts_id) {
ScriptModuleDeserializer deserializer(
std::move(cu),
std::move(reader),
/* pickle_dir_prefix = */ ".data/ts_code/" + ts_id + "/",
/* tensor_dir_prefix = */ ".data/",
std::move(storage_context));
ExtraFilesMap extra_files;
return deserializer.deserialize(device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
std::optional<at::Device> device,
bool load_debug_files) {
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), filename, device, extra_files, load_debug_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files,
bool restore_shapes) {
// NOTE: Zipformat can be large files. So using stream version directly
// instead of reading the file all at once.
if (getFileFormat(filename) != FileFormat::FlatbufferFileFormat) {
auto reader = std::make_unique<PyTorchStreamReader>(filename);
reader->setShouldLoadDebugSymbol(load_debug_files);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files, restore_shapes);
}
auto [data, size] = get_file_content(filename.c_str());
return _load_jit_module_from_bytes(
data, size, cu, device, extra_files, restore_shapes);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
std::optional<at::Device> device,
bool load_debug_files) {
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), std::move(rai), device, extra_files, load_debug_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
std::shared_ptr<ReadAdapterInterface> rai_shared = std::move(rai);
return import_ir_module(
std::move(cu), rai_shared, device, extra_files, load_debug_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<ReadAdapterInterface> rai,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto reader = std::make_shared<PyTorchStreamReader>(std::move(rai));
reader->setShouldLoadDebugSymbol(load_debug_files);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
Module load(
std::istream& in,
std::optional<at::Device> device,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(std::move(cu), in, device, load_debug_files);
}
Module load(
std::istream& in,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(
std::move(cu), in, device, extra_files, load_debug_files);
}
Module load(
const std::string& filename,
std::optional<at::Device> device,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(std::move(cu), filename, device, load_debug_files);
}
Module load(
const std::string& filename,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(
std::move(cu), filename, device, extra_files, load_debug_files);
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
std::optional<c10::Device> device,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), std::move(rai), device, extra_files, load_debug_files);
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
std::optional<c10::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(
std::move(cu), std::move(rai), device, extra_files, load_debug_files);
}
Module _load_jit_module_from_bytes(
const std::shared_ptr<char>& data,
size_t size,
std::shared_ptr<CompilationUnit> cu,
std::optional<c10::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes) {
TORCH_CHECK(size >= kFileFormatHeaderSize, "Unrecognized data format");
auto format = getFileFormat(data.get());
switch (format) {
case FileFormat::FlatbufferFileFormat: {
return parse_and_initialize_jit_module(data, size, extra_files, device);
}
case FileFormat::ZipFileFormat: {
auto rai = std::make_unique<MemoryReadAdapter>(data.get(), size);
auto reader = std::make_unique<PyTorchStreamReader>(std::move(rai));
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files, restore_shapes);
}
default:
TORCH_CHECK(false, "Unrecognized data format");
}
}
// Replace object with a newly created but equivalent object.
// The goal is to replace object's methods. However, since object's
// methods are attached to type; we need to replace it's type.
// Non-objects are unchanged; however, nested structures such as list, dict
// are also reconstructed because they might contain an object.
static IValue recreateObject(IValue ivalue, const TypeResolver& resolver) {
if (ivalue.isObject()) {
auto obj = ivalue.toObject();
auto classtype_old = obj->type();
auto newtype = resolver(*classtype_old->name());
size_t n = classtype_old->numAttributes();
auto newobj = c10::ivalue::Object::create(newtype, n);
for (const auto i : c10::irange(n)) {
newobj->setSlot(i, recreateObject(obj->getSlot(i), resolver));
}
return newobj;
} else if (ivalue.isList()) {
auto res = c10::impl::GenericList(ivalue.type()->containedType(0));
for (const auto& ival : ivalue.toList()) {
res.emplace_back(recreateObject(ival, resolver));
}
return res;
} else if (ivalue.isGenericDict()) {
auto result = c10::impl::GenericDict(
ivalue.type()->containedType(0), ivalue.type()->containedType(1));
for (const auto& kv : ivalue.toGenericDict()) {
result.insert_or_assign(
recreateObject(kv.key(), resolver),
recreateObject(kv.value(), resolver));
}
return result;
} else if (ivalue.isTuple()) {
std::vector<IValue> res;
for (const auto& ival : ivalue.toTuple()->elements()) {
res.push_back(recreateObject(ival, resolver));
}
return c10::ivalue::Tuple::create(res);
}
// Leaf types are returned verbatim.
return ivalue;
}
Module jitModuleFromSourceAndConstants(
const IValue& ivalue,
const ExtraFilesMap& source,
const std::vector<IValue>& constants,
int32_t version) {
auto compilation_unit = std::make_shared<CompilationUnit>();
SourceImporter importer(
compilation_unit,
&constants,
[&source](const std::string& qualifier) -> std::shared_ptr<Source> {
auto source_iter = source.find(qualifier);
if (source_iter == source.end()) {
return nullptr;
}
return std::make_shared<Source>(
source_iter->second, qualifier, 1, nullptr, Source::COPIES_STRING);
},
version);
auto type_resolver = [&](const c10::QualifiedName& qn) {
auto cls = importer.loadType(qn);
return c10::StrongTypePtr(compilation_unit, std::move(cls));
};
auto newIvalue = recreateObject(ivalue, type_resolver).toObject();
Module m(newIvalue);
rewriteQuantizedConvForBC(m);
return m;
}
} // namespace torch::jit