forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickler.h
425 lines (374 loc) · 13.4 KB
/
pickler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#pragma once
#include <ATen/core/qualified_name.h>
#include <string>
#include <utility>
#include <vector>
#include <ATen/Utils.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/FbcodeMaps.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/string_view.h>
#include <torch/csrc/Export.h>
namespace torch::jit {
// See Python's pickletools.py for a detailed description of each of these codes
enum class PickleOpCode : char {
MARK = '(',
STOP = '.',
POP = '0',
POP_MARK = '1',
DUP = '2',
FLOAT = 'F',
INT = 'I',
BININT = 'J',
BININT1 = 'K',
LONG = 'L',
BININT2 = 'M',
NONE = 'N',
PERSID = 'P',
BINPERSID = 'Q',
REDUCE = 'R',
STRING = 'S',
BINSTRING = 'T',
SHORT_BINSTRING = 'U',
// NB: Avoid using UNICODE as it is a macro in the Windows API
UNICODE_ = 'V',
BINUNICODE = 'X',
APPEND = 'a',
BUILD = 'b',
GLOBAL = 'c',
DICT = 'd',
EMPTY_DICT = '}',
APPENDS = 'e',
GET = 'g',
BINGET = 'h',
INST = 'i',
LONG_BINGET = 'j',
LIST = 'l',
EMPTY_LIST = ']',
OBJ = 'o',
PUT = 'p',
BINPUT = 'q',
LONG_BINPUT = 'r',
SETITEM = 's',
TUPLE = 't',
EMPTY_TUPLE = ')',
SETITEMS = 'u',
BINFLOAT = 'G',
// Protocol 2
PROTO = char('\x80'),
NEWOBJ = '\x81',
EXT1 = '\x82',
EXT2 = '\x83',
EXT4 = '\x84',
TUPLE1 = '\x85',
TUPLE2 = '\x86',
TUPLE3 = '\x87',
NEWTRUE = '\x88',
NEWFALSE = '\x89',
LONG1 = '\x8a',
LONG4 = '\x8b',
// Protocol 3 (Python 3.x)
BINBYTES = 'B',
SHORT_BINBYTES = 'C',
// Protocol 4
SHORT_BINUNICODE = char('\x8c'),
BINUNICODE8 = '\x8d',
BINBYTES8 = '\x8e',
EMPTY_SET = '\x8f',
ADDITEMS = '\x90',
FROZENSET = '\x91',
NEWOBJ_EX = '\x92',
STACK_GLOBAL = '\x93',
MEMOIZE = '\x94',
FRAME = '\x95'
};
using ::c10::IValue;
struct WriteableTensorData {
const char* data() const {
return static_cast<const char*>(tensor_.storage().data());
}
size_t sizeInBytes() const {
return size_;
}
size_t nbytes() const {
return tensor_.storage().nbytes();
}
bool storageHasDeleter() const {
return tensor_.storage().data_ptr().get_context() != nullptr;
}
private:
friend TORCH_API WriteableTensorData
getWriteableTensorData(const at::Tensor& tensor, bool to_cpu);
at::Tensor tensor_;
uint64_t size_;
};
void setTypeTags(bool state);
bool getTypeTags();
class TORCH_API Pickler {
AT_DISALLOW_COPY_AND_ASSIGN(Pickler);
public:
Pickler(std::function<void(const char*, size_t)> writer)
: Pickler(std::move(writer), nullptr, nullptr, nullptr) {}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
Pickler(
std::function<void(const char*, size_t)> writer,
std::vector<at::Tensor>* tensor_table,
std::function<c10::QualifiedName(const c10::ClassTypePtr&)> type_renamer,
std::vector<c10::ClassTypePtr>* memoized_class_types,
std::function<std::string(const at::Tensor&)> get_tensor_id = nullptr,
bool tag_aggregates = true)
: writer_(std::move(writer)),
tensor_table_(tensor_table),
type_renamer_(std::move(type_renamer)),
memoized_class_types_(memoized_class_types),
get_tensor_id_(std::move(get_tensor_id)),
tag_aggregates_(tag_aggregates) {}
~Pickler();
// Push protocol onto the stack
void protocol();
// Push STOP PickleOpCode onto the stack
void stop();
void pushIValue(const IValue& ivalue);
void startTuple();
void endTuple();
const std::vector<at::Tensor>& tensorData() {
return tensor_data_;
}
void pushEmptyDict();
void pushDict(const IValue& ivalue);
void pushInt(int64_t value);
void pushLong(const std::string& data);
private:
void pushIValueImpl(const IValue& ivalue);
void startTypeTag();
void endTypeTag(const IValue& value);
void pushBool(bool value);
void pushDouble(double value);
void pushComplexDouble(const IValue& value);
void pushGenericList(const IValue& ivalue);
void pushIntList(const IValue& ivalue);
void pushList(const IValue& ivalue);
void pushTensor(const IValue& ivalue);
void pushTensorReference(const IValue& ivalue);
void pushLiteralTensor(const IValue& ivalue);
void pushLiteralSparseTensor(const at::Tensor& tensor);
void pushTuple(const IValue& ivalue);
void pushString(const std::string& string);
void pushDevice(const IValue& ivalue);
#ifdef USE_DISTRIBUTED
void pushRRef(const IValue& ivalue);
#endif
// unmemoized version
void pushStringImpl(const std::string& string);
void pushStorageOfTensor(const at::Tensor& tensor);
void pushBinGet(uint32_t memo_id);
void pushSpecializedList(
const IValue& ivalue,
const char* list_name,
const std::function<void(const IValue&)>& item_pusher);
void pushGlobal(std::string_view module_name, std::string_view class_name);
// raw string data is appended directly to the byte stream
void pushBytes(const std::string& string);
void pushTensorData(const at::Tensor& tensor);
// Add a BINPUT op and return the memoization id used
size_t pushNextBinPut();
const void* getPointer(const IValue& ivalue);
// Caller checks that bufferPos_ > 0
void flushNonEmpty() {
writer_(buffer_.data(), bufferPos_);
bufferPos_ = 0;
}
void flush() {
if (bufferPos_ != 0) {
flushNonEmpty();
}
}
// These convert values to bytes and add them to the stack (NB: since T is to
// the left of a '::', its type cannot be deduced by the compiler so one must
// explicitly instantiate the template, i.e. push<int>(int) works, push(int)
// does not)
static constexpr size_t kBufferSize = 256;
template <typename T>
void push(std::common_type_t<T> value) {
const char* begin = reinterpret_cast<const char*>(&value);
if (bufferPos_ + sizeof(T) > buffer_.size()) {
flushNonEmpty();
}
static_assert(sizeof(T) <= kBufferSize, "Buffer size assumption");
memcpy(buffer_.data() + bufferPos_, begin, sizeof(T));
bufferPos_ += sizeof(T);
}
// Stream to write binary data to
// Code shouldn't call writer_ directly without first flushing.
std::function<void(const char*, size_t)> writer_;
// Buffer to avoid calling a writer_ on a per-byte basis.
std::array<char, kBufferSize> buffer_;
size_t bufferPos_{0};
// Stack of opcodes/data
std::vector<char> stack_;
// External table of tensors to serialize. If this is missing, then tensors
// are serialized directly into the pickle
std::vector<at::Tensor>* tensor_table_;
// TODO: only use this if necessary (add a pass to find all shared ivalues,
// and only memoize those)
uint32_t memo_id_ = 0;
// Memoization of IValues that have been written (index in table is used for
// BINPUT opcodes) to enable shared references
c10::FastMap<const void*, uint32_t> memoized_ivalue_map_;
// because we de-dup ivalues based on their raw pointer address in the above
// map we need to keep all the memoized values alive during the pickle.
// Otherwise, it is possible that a raw address gets reused for another
// object, and we will alias it to the old object at that address.
std::vector<IValue> memoized_ivalues_;
std::function<c10::QualifiedName(const c10::ClassTypePtr&)> type_renamer_;
// List of all the types that it wrote, inspect from the IValues it wrote.
std::vector<c10::ClassTypePtr>* memoized_class_types_;
// Function to grab next id_name for tensor storage, function is responsible
// for returning unique ids
std::function<std::string(const at::Tensor&)> get_tensor_id_;
// List of tensor storages to serialize in the same binary as the pickle data
// similar to ivalues, they are memoized using BINPUT
std::vector<at::Tensor> tensor_data_;
c10::FastMap<const void*, uint32_t> memoized_storage_map_;
c10::FastMap<std::string, uint32_t> memoized_globals_map_;
c10::FastMap<std::string, uint32_t> memoized_strings_map_;
c10::FastMap<std::string, uint32_t> memoized_devices_map_;
// when true, List and Dict objects will be wrapped in a
// torch.jit._pickle.restore_type_tag call to correctly set the dynamic
// TorchScript type for the object. When true the thing unpickling must have
// torch installed.
bool tag_aggregates_;
};
// returns a (tensor, record_size) for a tensor, converting it to a CPU tensor
// if it was CUDA and to_cpu is True.
TORCH_API WriteableTensorData
getWriteableTensorData(const at::Tensor& tensor, bool to_cpu = true);
// return the value of the tensor's storage pointer
uint64_t getStorageKey(const at::Tensor& tensor);
// if the cls has __getstate__/__setstate__
// assert they have the right schema and return true,
// otherwise return false
bool checkHasValidSetGetState(const std::shared_ptr<c10::ClassType>& cls);
// Declare BackendMeta serialization and deserialization function pointer types.
using BackendMetaPtr = std::function<
void(const at::Tensor&, std::unordered_map<std::string, bool>&)>;
// A allowlist of device type, currently available is PrivateUse1
inline std::unordered_set<c10::DeviceType>& GetBackendMetaAllowlist() {
static std::unordered_set<c10::DeviceType> DeviceTypeAllowlist{
c10::DeviceType::PrivateUse1};
return DeviceTypeAllowlist;
}
// Dynamically obtain serialization function pairs
// that require the corresponding backend.
inline std::array<
std::optional<std::pair<BackendMetaPtr, BackendMetaPtr>>,
at::COMPILE_TIME_MAX_DEVICE_TYPES>&
GetBackendMetaSerialization() {
// The array to save function pointer for BackendMeta serialization.
// key is the DeviceType, value is std::pair obj.
// value.first represent get function and value.seconde represent set function
static std::array<
std::optional<std::pair<BackendMetaPtr, BackendMetaPtr>>,
at::COMPILE_TIME_MAX_DEVICE_TYPES>
BackendMetaSerialization;
return BackendMetaSerialization;
}
// Register function pointer of Tensor BackendMetadata for serialization.
TORCH_API inline void TensorBackendMetaRegistry(
c10::DeviceType t,
const BackendMetaPtr& get_fptr,
const BackendMetaPtr& set_fptr) {
// allowlist verification
// Only if the devicetype is in the allowlist,
// we allow the serialization extension to be registered for backendmeta data.
const auto& DeviceTypeAllowlist = GetBackendMetaAllowlist();
TORCH_CHECK(
DeviceTypeAllowlist.find(t) != DeviceTypeAllowlist.end(),
"It is not allowed to register the serialization method ",
"of backendMeta data for PrivateUse1. ",
"If you have related serialization requirements, ",
"please expand the allowlist");
// Register function pointer
int device_type = static_cast<int>(t);
auto& BackendMetaSerialization = GetBackendMetaSerialization();
TORCH_CHECK(
!BackendMetaSerialization[device_type].has_value(),
"The tensor BackendMeta serialization function pointer for ",
t,
" has been registered.");
BackendMetaSerialization[device_type] =
std::optional<std::pair<BackendMetaPtr, BackendMetaPtr>>(
std::make_pair(get_fptr, set_fptr));
}
// Return a map of Tensor Metadata which including BackendMetaData for
// serialization. For now, it only takes care of `conj` and `neg` bit.
inline std::unordered_map<std::string, bool> getTensorMetadata(
const at::Tensor& t) {
// We don't support serializing `ZeroTensor` as it is not public
// facing yet.
TORCH_CHECK(
!t._is_zerotensor(),
"ZeroTensor is not serializable,",
" please file an issue if required.");
std::unordered_map<std::string, bool> metadata{};
// Only add meta-data if the value is not default.
if (t.is_conj()) {
metadata["conj"] = true;
}
if (t.is_neg()) {
metadata["neg"] = true;
}
// Only add BackendMetaData for custom backend if the function pointer is
// registered.
int device_type = static_cast<int>(t.device().type());
const auto& BackendMetaSerialization = GetBackendMetaSerialization();
if (BackendMetaSerialization[device_type].has_value()) {
// Pass the tensor and metadata map references as parameters to the custom
// serialization function.
BackendMetaPtr fptr = BackendMetaSerialization[device_type].value().first;
fptr(t, metadata);
}
return metadata;
}
// set Tensor Metadata based on the map.
// Refer: getTensorMetadata
inline void setTensorMetadata(
const at::Tensor& t,
std::unordered_map<std::string, bool> metadata) {
auto iter_end = metadata.end();
auto iter_temp = metadata.find("conj");
if (iter_temp != iter_end) {
t._set_conj(true);
metadata.erase(iter_temp);
}
iter_temp = metadata.find("neg");
if (iter_temp != iter_end) {
t._set_neg(true);
metadata.erase(iter_temp);
}
// Only set BackendMetaData for custom backend if the function pointer is
// registered.
int device_type = static_cast<int>(t.device().type());
const auto& BackendMetaSerialization = GetBackendMetaSerialization();
if (BackendMetaSerialization[device_type].has_value()) {
// Pass the tensor and metadata map references as parameters to the custom
// deserialization function.
BackendMetaPtr fptr = BackendMetaSerialization[device_type].value().second;
fptr(t, metadata);
}
}
// set Tensor metadata based on the map.
// NOTE: This overload is required by unpickler.cpp
inline void setTensorMetadata(
const at::Tensor& t,
const c10::Dict<c10::IValue, c10::IValue>& metadata_idict) {
std::unordered_map<std::string, bool> metadata;
for (auto& pair : metadata_idict) {
auto key = *pair.key().toString();
metadata[key] = pair.value().toBool();
}
setTensorMetadata(t, std::move(metadata));
}
} // namespace torch::jit