-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
81 lines (63 loc) · 2.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import matplotlib.pyplot as plt
import plotly.plotly as py
import plotly.graph_objs as go
import pandas as pd
import mglearn
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
mydata = pd.read_csv("voice.csv");
#print (mydata.head(0))
#print (mydata.shape)
#Histogram between target and independent variable
male = mydata.loc[mydata['label']=='male']
female = mydata.loc[mydata['label'] == 'female']
'''
for i in range(20):
trace1 = go.Histogram(x = male.ix[:,i])
trace2 = go.Histogram(x = female.ix[:,i])
data = [trace1,trace2]
layout = go.Layout(barmode = 'overlay')
fig = go.Figure(data = data,layout=layout)
py.iplot(fig,filename = 'hist')
'''
fig, axes = plt.subplots(10, 2, figsize=(10,20))
ax = axes.ravel()
for i in range(20):
ax[i].hist(male.ix[:,i], bins=20, color=mglearn.cm3(0), alpha=.5)
ax[i].hist(female.ix[:, i], bins=20, color=mglearn.cm3(2), alpha=.5)
ax[i].set_title(list(male)[i])
ax[i].set_yticks(())
ax[0].set_xlabel("Feature magnitude")
ax[0].set_ylabel("Frequency")
ax[0].legend(["male", "female"], loc="best")
fig.tight_layout()
#prepare data for modeling
mydata.loc[:,'label'][mydata['label'] == "male"] = 0
mydata.loc[:,'label'][mydata['label'] == "female"] = 1
#print (mydata.head(1))
mydata_train,mydata_test = train_test_split(mydata,random_state = 0,test_size = 0.2)
scalar = StandardScaler()
scalar.fit(mydata_train.ix[:,0:20])
feature = list(mydata)
#print(feature)
X_train = scalar.transform(mydata_train.ix[:,0:20])
X_test = scalar.transform(mydata_test.ix[:,0:20])
y_train = list(mydata_train['label'].values)
y_test = list(mydata_test['label'].values)
clf = DecisionTreeClassifier(random_state = 0).fit(X_train,y_train)
print ("Decision Tree")
print("Accurracy on Training Set: {:.3f}".format(clf.score(X_train,y_train)))
print("Accurracy on Test Set: {:.3f}".format(clf.score(X_test,y_test)))
# print(feature[0:20])
# print(X_test[1])
# print(y_test[1])
new_y_train = []
for x in y_train:
if(x == 0):
new_y_train.append("Male");
else:
new_y_train.append("Female");
tree.export_graphviz(clf,out_file='tree.dot', feature_names=feature[0:20],class_names = new_y_train,filled= True,rounded = True, special_characters = True)