layout | title | parent | nav_order |
---|---|---|---|
default |
Anomaly Detection API |
Anomaly Detection |
1 |
Use these anomaly detection operations to programmatically create and manage detectors.
- TOC {:toc}
Creates an anomaly detector.
This command creates a detector named http_requests
that finds anomalies based on the sum and average number of failed HTTP requests:
POST _opendistro/_anomaly_detection/detectors
{
"name": "test-detector",
"description": "Test detector",
"time_field": "timestamp",
"indices": [
"order*"
],
"feature_attributes": [
{
"feature_name": "total_order",
"feature_enabled": true,
"aggregation_query": {
"total_order": {
"sum": {
"field": "value"
}
}
}
}
],
"filter_query": {
"bool": {
"filter": [
{
"exists": {
"field": "value",
"boost": 1
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
}
}
{
"_id": "m4ccEnIBTXsGi3mvMt9p",
"_version": 1,
"_seq_no": 3,
"_primary_term": 1,
"anomaly_detector": {
"name": "test-detector",
"description": "Test detector",
"time_field": "timestamp",
"indices": [
"order*"
],
"filter_query": {
"bool": {
"filter": [
{
"exists": {
"field": "value",
"boost": 1
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"schema_version": 0,
"feature_attributes": [
{
"feature_id": "mYccEnIBTXsGi3mvMd8_",
"feature_name": "total_order",
"feature_enabled": true,
"aggregation_query": {
"total_order": {
"sum": {
"field": "value"
}
}
}
}
]
}
}
To set a category field for high cardinality:
POST _opendistro/_anomaly_detection/detectors
{
"name": "Host OK Rate Detector",
"description": "ok rate",
"time_field": "@timestamp",
"indices": [
"host-cloudwatch"
],
"category_field": [
"host"
],
"feature_attributes": [
{
"feature_name": "latency_max",
"feature_enabled": true,
"aggregation_query": {
"latency_max": {
"max": {
"field": "latency"
}
}
}
}
],
"window_delay": {
"period": {
"interval": 10,
"unit": "MINUTES"
}
},
"detection_interval": {
"period": {
"interval": 1,
"unit": "MINUTES"
}
}
}
{
"_id": "4CIGoHUBTpMGN-4KzBQg",
"_version": 1,
"_seq_no": 0,
"anomaly_detector": {
"name": "Host OK Rate Detector",
"description": "ok rate",
"time_field": "@timestamp",
"indices": [
"server-metrics"
],
"filter_query": {
"match_all": {
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 10,
"unit": "MINUTES"
}
},
"shingle_size": 1,
"schema_version": 2,
"feature_attributes": [
{
"feature_id": "0Kld3HUBhpHMyt2e_UHn",
"feature_name": "latency_max",
"feature_enabled": true,
"aggregation_query": {
"latency_max": {
"max": {
"field": "latency"
}
}
}
}
],
"last_update_time": 1604707601438,
"category_field": [
"host"
]
},
"_primary_term": 1
}
To create a historical detector:
POST _opendistro/_anomaly_detection/detectors
{
"name": "test1",
"description": "test historical detector",
"time_field": "timestamp",
"indices": [
"host-cloudwatch"
],
"filter_query": {
"match_all": {
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"feature_attributes": [
{
"feature_name": "F1",
"feature_enabled": true,
"aggregation_query": {
"f_1": {
"sum": {
"field": "value"
}
}
}
}
],
"detection_date_range": {
"start_time": 1577840401000,
"end_time": 1606121925000
}
}
You can specify the following options.
Options | Description | Type | Required |
---|---|---|---|
name |
The name of the detector. | string |
Yes |
description |
A description of the detector. | string |
Yes |
time_field |
The name of the time field. | string |
Yes |
indices |
A list of indices to use as the data source. | list |
Yes |
feature_attributes |
Specify a feature_name , set the enabled parameter to true , and specify an aggregation query. |
list |
Yes |
filter_query |
Provide an optional filter query for your feature. | object |
No |
detection_interval |
The time interval for your anomaly detector. | object |
Yes |
window_delay |
Add extra processing time for data collection. | object |
No |
category_field |
Categorizes or slices data with a dimension. Similar to GROUP BY in SQL. |
list |
No |
detection_date_range |
Specify the start time and end time for a historical detector. | object |
No |
Passes a date range to the anomaly detector to return any anomalies within that date range.
POST _opendistro/_anomaly_detection/detectors/<detectorId>/_preview
{
"period_start": 1588838250000,
"period_end": 1589443050000
}
{
"anomaly_result": [
...
{
"detector_id": "m4ccEnIBTXsGi3mvMt9p",
"data_start_time": 1588843020000,
"data_end_time": 1588843620000,
"feature_data": [
{
"feature_id": "xxokEnIBcpeWMD987A1X",
"feature_name": "total_order",
"data": 489.9929131106
}
],
"anomaly_grade": 0,
"confidence": 0.99
}
...
],
"anomaly_detector": {
"name": "test-detector",
"description": "Test detector",
"time_field": "timestamp",
"indices": [
"order*"
],
"filter_query": {
"bool": {
"filter": [
{
"exists": {
"field": "value",
"boost": 1
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 10,
"unit": "MINUTES"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "MINUTES"
}
},
"schema_version": 0,
"feature_attributes": [
{
"feature_id": "xxokEnIBcpeWMD987A1X",
"feature_name": "total_order",
"feature_enabled": true,
"aggregation_query": {
"total_order": {
"sum": {
"field": "value"
}
}
}
}
],
"last_update_time": 1589442309241
}
}
If you specify a category field, each result is associated with an entity:
{
"anomaly_result": [
{
"detector_id": "4CIGoHUBTpMGN-4KzBQg",
"data_start_time": 1604277960000,
"data_end_time": 1604278020000,
"schema_version": 0,
"anomaly_grade": 0,
"confidence": 0.99
}
],
"entity": [
{
"name": "host",
"value": "i-00f28ec1eb8997686"
}
]
},
{
"detector_id": "4CIGoHUBTpMGN-4KzBQg",
"data_start_time": 1604278020000,
"data_end_time": 1604278080000,
"schema_version": 0,
"feature_data": [
{
"feature_id": "0Kld3HUBhpHMyt2e_UHn",
"feature_name": "latency_max",
"data": -17
}
],
"anomaly_grade": 0,
"confidence": 0.99,
"entity": [
{
"name": "host",
"value": "i-00f28ec1eb8997686"
}
]
}
...
Starts a real-time or historical detector job.
POST _opendistro/_anomaly_detection/detectors/<detectorId>/_start
{
"_id" : "m4ccEnIBTXsGi3mvMt9p",
"_version" : 1,
"_seq_no" : 6,
"_primary_term" : 1
}
Stops a real-time or historical anomaly detector job.
POST _opendistro/_anomaly_detection/detectors/<detectorId>/_stop
Stopped detector: m4ccEnIBTXsGi3mvMt9p
Returns all results for a search query.
GET _opendistro/_anomaly_detection/detectors/results/_search
POST _opendistro/_anomaly_detection/detectors/results/_search
{
"query": {
"bool": {
"must": {
"range": {
"anomaly_score": {
"gte": 0.6,
"lte": 1
}
}
}
}
}
}
{
"took": 9,
"timed_out": false,
"_shards": {
"total": 25,
"successful": 25,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": ".opendistro-anomaly-results-history-2020.04.30-1",
"_type": "_doc",
"_id": "_KBrzXEBbpoKkFM5mStm",
"_version": 1,
"_seq_no": 58,
"_primary_term": 1,
"_score": 1,
"_source": {
"detector_id": "2KDozHEBbpoKkFM58yr6",
"anomaly_score": 0.8995068350366767,
"execution_start_time": 1588289313114,
"data_end_time": 1588289313114,
"confidence": 0.84214852704501,
"data_start_time": 1588289253114,
"feature_data": [
{
"feature_id": "X0fpzHEB5NGZmIRkXKcy",
"feature_name": "total_error",
"data": 20
}
],
"execution_end_time": 1588289313126,
"anomaly_grade": 0
}
},
{
"_index": ".opendistro-anomaly-results-history-2020.04.30-1",
"_type": "_doc",
"_id": "EqB1zXEBbpoKkFM5qyyE",
"_version": 1,
"_seq_no": 61,
"_primary_term": 1,
"_score": 1,
"_source": {
"detector_id": "2KDozHEBbpoKkFM58yr6",
"anomaly_score": 0.7086834513354907,
"execution_start_time": 1588289973113,
"data_end_time": 1588289973113,
"confidence": 0.42162017029510446,
"data_start_time": 1588289913113,
"feature_data": [
{
"feature_id": "X0fpzHEB5NGZmIRkXKcy",
"feature_name": "memory_usage",
"data": 20.0347333108
}
],
"execution_end_time": 1588289973124,
"anomaly_grade": 0
}
}
]
}
}
In high cardinality detectors, the result contains entities’ information. To see an ordered set of anomaly records for an entity with an anomaly within a certain time range for a specific feature value:
POST _opendistro/_anomaly_detection/detectors/results/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"detector_id": "4CIGoHUBTpMGN-4KzBQg"
}
},
{
"range": {
"anomaly_grade": {
"gt": 0
}
}
},
{
"nested": {
"path": "entity",
"query": {
"bool": {
"must": [
{
"term": {
"entity.value": "i-00f28ec1eb8997685"
}
}
]
}
}
}
}
]
}
},
"size": 8,
"sort": [
{
"execution_end_time": {
"order": "desc"
}
}
],
"track_total_hits": true
}
{
"took": 443,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 7,
"relation": "eq"
},
"max_score": null,
"hits": [
{
"_index": ".opendistro-anomaly-results-history-2020.11.07-1",
"_type": "_doc",
"_id": "BiItoHUBTpMGN-4KARY5",
"_version": 1,
"_seq_no": 206,
"_primary_term": 1,
"_score": null,
"_source": {
"detector_id": "4CIGoHUBTpMGN-4KzBQg",
"schema_version": 2,
"anomaly_score": 2.462550517055763,
"execution_start_time": 1604710105400,
"data_end_time": 1604710094516,
"confidence": 0.8246254862573076,
"data_start_time": 1604710034516,
"feature_data": [
{
"feature_id": "0Kld3HUBhpHMyt2e_UHn",
"feature_name": "latency_max",
"data": 3526
}
],
"execution_end_time": 1604710105401,
"anomaly_grade": 0.08045977011494891,
"entity": [
{
"name": "host",
"value": "i-00f28ec1eb8997685"
}
]
},
"sort": [
1604710105401
]
},
{
"_index": ".opendistro-anomaly-results-history-2020.11.07-1",
"_type": "_doc",
"_id": "wiImoHUBTpMGN-4KlhXs",
"_version": 1,
"_seq_no": 156,
"_primary_term": 1,
"_score": null,
"_source": {
"detector_id": "4CIGoHUBTpMGN-4KzBQg",
"schema_version": 2,
"anomaly_score": 4.892453213261217,
"execution_start_time": 1604709684971,
"data_end_time": 1604709674522,
"confidence": 0.8313735633713821,
"data_start_time": 1604709614522,
"feature_data": [
{
"feature_id": "0Kld3HUBhpHMyt2e_UHn",
"feature_name": "latency_max",
"data": 5709
}
],
"execution_end_time": 1604709684971,
"anomaly_grade": 0.06542056074767538,
"entity": [
{
"name": "host",
"value": "i-00f28ec1eb8997685"
}
]
},
"sort": [
1604709684971
]
},
{
"_index": ".opendistro-anomaly-results-history-2020.11.07-1",
"_type": "_doc",
"_id": "ZiIcoHUBTpMGN-4KhhVA",
"_version": 1,
"_seq_no": 79,
"_primary_term": 1,
"_score": null,
"_source": {
"detector_id": "4CIGoHUBTpMGN-4KzBQg",
"schema_version": 2,
"anomaly_score": 3.187717536855158,
"execution_start_time": 1604709025343,
"data_end_time": 1604709014520,
"confidence": 0.8301116064308817,
"data_start_time": 1604708954520,
"feature_data": [
{
"feature_id": "0Kld3HUBhpHMyt2e_UHn",
"feature_name": "latency_max",
"data": 441
}
],
"execution_end_time": 1604709025344,
"anomaly_grade": 0.040767386091133916,
"entity": [
{
"name": "host",
"value": "i-00f28ec1eb8997685"
}
]
},
"sort": [
1604709025344
]
}
]
}
}
In historical detectors, specify the detector_id
.
To get the latest task:
GET _opendistro/_anomaly_detection/detectors/<detector_id>?task=true
To query the anomaly results with task_id
:
GET _opendistro/_anomaly_detection/detectors/results/_search
{
"query": {
"term": {
"task_id": {
"value": "NnlV9HUBQxqfQ7vBJNzy"
}
}
}
}
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 2.1366,
"hits": [
{
"_index": ".opendistro-anomaly-detection-state",
"_type": "_doc",
"_id": "CoM8WncBtt2qvI-LZO7_",
"_version": 8,
"_seq_no": 1351,
"_primary_term": 3,
"_score": 2.1366,
"_source": {
"detector_id": "dZc8WncBgO2zoQoFWVBA",
"worker_node": "dk6-HuKQRMKm2fi8TSDHsg",
"task_progress": 0.09486946,
"last_update_time": 1612126667008,
"execution_start_time": 1612126643455,
"state": "RUNNING",
"coordinating_node": "gs213KqjS4q7H4Bmn_ZuLA",
"current_piece": 1583503800000,
"task_type": "HISTORICAL",
"started_by": "admin",
"init_progress": 1,
"is_latest": true,
"detector": {
"description": "test",
"ui_metadata": {
"features": {
"F1": {
"aggregationBy": "sum",
"aggregationOf": "value",
"featureType": "simple_aggs"
}
}
},
"detection_date_range": {
"start_time": 1580504240308,
"end_time": 1612126640308
},
"feature_attributes": [
{
"feature_id": "dJc8WncBgO2zoQoFWVAt",
"feature_enabled": true,
"feature_name": "F1",
"aggregation_query": {
"f_1": {
"sum": {
"field": "value"
}
}
}
}
],
"schema_version": 0,
"time_field": "timestamp",
"last_update_time": 1612126640448,
"indices": [
"nab_art_daily_jumpsdown"
],
"window_delay": {
"period": {
"unit": "Minutes",
"interval": 1
}
},
"detection_interval": {
"period": {
"unit": "Minutes",
"interval": 10
}
},
"name": "test-historical-detector",
"filter_query": {
"match_all": {
"boost": 1
}
},
"shingle_size": 8,
"user": {
"backend_roles": [
"admin"
],
"custom_attribute_names": [],
"roles": [
"all_access",
"own_index"
],
"name": "admin",
"user_requested_tenant": "__user__"
},
"detector_type": "HISTORICAL_SINGLE_ENTITY"
},
"user": {
"backend_roles": [
"admin"
],
"custom_attribute_names": [],
"roles": [
"all_access",
"own_index"
],
"name": "admin",
"user_requested_tenant": "__user__"
}
}
}
]
}
}
Deletes a detector based on the detector_id
.
To delete a detector, you need to first stop the detector.
DELETE _opendistro/_anomaly_detection/detectors/<detectorId>
{
"_index" : ".opendistro-anomaly-detectors",
"_type" : "_doc",
"_id" : "m4ccEnIBTXsGi3mvMt9p",
"_version" : 2,
"result" : "deleted",
"forced_refresh" : true,
"_shards" : {
"total" : 2,
"successful" : 2,
"failed" : 0
},
"_seq_no" : 6,
"_primary_term" : 1
}
Updates a detector with any changes, including the description or adding or removing of features. To update a detector, you need to first stop the detector.
PUT _opendistro/_anomaly_detection/detectors/<detectorId>
{
"name": "test-detector",
"description": "Test detector",
"time_field": "timestamp",
"indices": [
"order*"
],
"feature_attributes": [
{
"feature_name": "total_order",
"feature_enabled": true,
"aggregation_query": {
"total_order": {
"sum": {
"field": "value"
}
}
}
}
],
"filter_query": {
"bool": {
"filter": [
{
"exists": {
"field": "value",
"boost": 1
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 10,
"unit": "MINUTES"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "MINUTES"
}
}
}
{
"_id" : "m4ccEnIBTXsGi3mvMt9p",
"_version" : 2,
"_seq_no" : 4,
"_primary_term" : 1,
"anomaly_detector" : {
"name" : "test-detector",
"description" : "Test detector",
"time_field" : "timestamp",
"indices" : [
"order*"
],
"filter_query" : {
"bool" : {
"filter" : [
{
"exists" : {
"field" : "value",
"boost" : 1.0
}
}
],
"adjust_pure_negative" : true,
"boost" : 1.0
}
},
"detection_interval" : {
"period" : {
"interval" : 10,
"unit" : "Minutes"
}
},
"window_delay" : {
"period" : {
"interval" : 1,
"unit" : "Minutes"
}
},
"schema_version" : 0,
"feature_attributes" : [
{
"feature_id" : "xxokEnIBcpeWMD987A1X",
"feature_name" : "total_order",
"feature_enabled" : true,
"aggregation_query" : {
"total_order" : {
"sum" : {
"field" : "value"
}
}
}
}
]
}
}
To update a historical detector:
PUT _opendistro/_anomaly_detection/detectors/<detectorId>
{
"name": "test1",
"description": "test historical detector",
"time_field": "timestamp",
"indices": [
"nab_art_daily_jumpsdown"
],
"filter_query": {
"match_all": {
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"feature_attributes": [
{
"feature_name": "F1",
"feature_enabled": true,
"aggregation_query": {
"f_1": {
"sum": {
"field": "value"
}
}
}
}
],
"detection_date_range": {
"start_time": 1577840401000,
"end_time": 1606121925000
}
}
Returns all information about a detector based on the detector_id
.
GET _opendistro/_anomaly_detection/detectors/<detectorId>
{
"_id" : "m4ccEnIBTXsGi3mvMt9p",
"_version" : 1,
"_primary_term" : 1,
"_seq_no" : 3,
"anomaly_detector" : {
"name" : "test-detector",
"description" : "Test detector",
"time_field" : "timestamp",
"indices" : [
"order*"
],
"filter_query" : {
"bool" : {
"filter" : [
{
"exists" : {
"field" : "value",
"boost" : 1.0
}
}
],
"adjust_pure_negative" : true,
"boost" : 1.0
}
},
"detection_interval" : {
"period" : {
"interval" : 1,
"unit" : "Minutes"
}
},
"window_delay" : {
"period" : {
"interval" : 1,
"unit" : "Minutes"
}
},
"schema_version" : 0,
"feature_attributes" : [
{
"feature_id" : "mYccEnIBTXsGi3mvMd8_",
"feature_name" : "total_order",
"feature_enabled" : true,
"aggregation_query" : {
"total_order" : {
"sum" : {
"field" : "value"
}
}
}
}
],
"last_update_time" : 1589441737319
}
}
Use job=true
to get anomaly detection job information.
GET _opendistro/_anomaly_detection/detectors/<detectorId>?job=true
{
"_id" : "m4ccEnIBTXsGi3mvMt9p",
"_version" : 1,
"_primary_term" : 1,
"_seq_no" : 3,
"anomaly_detector" : {
"name" : "test-detector",
"description" : "Test detector",
"time_field" : "timestamp",
"indices" : [
"order*"
],
"filter_query" : {
"bool" : {
"filter" : [
{
"exists" : {
"field" : "value",
"boost" : 1.0
}
}
],
"adjust_pure_negative" : true,
"boost" : 1.0
}
},
"detection_interval" : {
"period" : {
"interval" : 1,
"unit" : "Minutes"
}
},
"window_delay" : {
"period" : {
"interval" : 1,
"unit" : "Minutes"
}
},
"schema_version" : 0,
"feature_attributes" : [
{
"feature_id" : "mYccEnIBTXsGi3mvMd8_",
"feature_name" : "total_order",
"feature_enabled" : true,
"aggregation_query" : {
"total_order" : {
"sum" : {
"field" : "value"
}
}
}
}
],
"last_update_time" : 1589441737319
},
"anomaly_detector_job" : {
"name" : "m4ccEnIBTXsGi3mvMt9p",
"schedule" : {
"interval" : {
"start_time" : 1589442051271,
"period" : 1,
"unit" : "Minutes"
}
},
"window_delay" : {
"period" : {
"interval" : 1,
"unit" : "Minutes"
}
},
"enabled" : true,
"enabled_time" : 1589442051271,
"last_update_time" : 1589442051271,
"lock_duration_seconds" : 60
}
}
Use task=true
to get historical detector task information.
GET _opendistro/_anomaly_detection/detectors/<detectorId>?task=true
{
"_id": "BwzKQXcB89DLS7G9rg7Y",
"_version": 1,
"_primary_term": 2,
"_seq_no": 10,
"anomaly_detector": {
"name": "test-ylwu1",
"description": "test",
"time_field": "timestamp",
"indices": [
"nab*"
],
"filter_query": {
"match_all": {
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 10,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"shingle_size": 8,
"schema_version": 0,
"feature_attributes": [
{
"feature_id": "BgzKQXcB89DLS7G9rg7G",
"feature_name": "F1",
"feature_enabled": true,
"aggregation_query": {
"f_1": {
"sum": {
"field": "value"
}
}
}
}
],
"ui_metadata": {
"features": {
"F1": {
"aggregationBy": "sum",
"aggregationOf": "value",
"featureType": "simple_aggs"
}
}
},
"last_update_time": 1611716538071,
"user": {
"name": "admin",
"backend_roles": [
"admin"
],
"roles": [
"all_access",
"own_index"
],
"custom_attribute_names": [],
"user_requested_tenant": "__user__"
},
"detector_type": "HISTORICAL_SINGLE_ENTITY",
"detection_date_range": {
"start_time": 1580094137997,
"end_time": 1611716537997
}
},
"anomaly_detection_task": {
"task_id": "sgxaRXcB89DLS7G9RfIO",
"last_update_time": 1611776648699,
"started_by": "admin",
"state": "FINISHED",
"detector_id": "BwzKQXcB89DLS7G9rg7Y",
"task_progress": 1,
"init_progress": 1,
"current_piece": 1611716400000,
"execution_start_time": 1611776279822,
"execution_end_time": 1611776648679,
"is_latest": true,
"task_type": "HISTORICAL",
"coordinating_node": "gs213KqjS4q7H4Bmn_ZuLA",
"worker_node": "PgfR3JhbT7yJMx7bwQ6E3w",
"detector": {
"name": "test-ylwu1",
"description": "test",
"time_field": "timestamp",
"indices": [
"nab*"
],
"filter_query": {
"match_all": {
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 10,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"shingle_size": 8,
"schema_version": 0,
"feature_attributes": [
{
"feature_id": "BgzKQXcB89DLS7G9rg7G",
"feature_name": "F1",
"feature_enabled": true,
"aggregation_query": {
"f_1": {
"sum": {
"field": "value"
}
}
}
}
],
"ui_metadata": {
"features": {
"F1": {
"aggregationBy": "sum",
"aggregationOf": "value",
"featureType": "simple_aggs"
}
}
},
"last_update_time": 1611716538071,
"user": {
"name": "admin",
"backend_roles": [
"admin"
],
"roles": [
"all_access",
"own_index"
],
"custom_attribute_names": [],
"user_requested_tenant": "__user__"
},
"detector_type": "HISTORICAL_SINGLE_ENTITY",
"detection_date_range": {
"start_time": 1580094137997,
"end_time": 1611716537997
}
},
"user": {
"name": "admin",
"backend_roles": [
"admin"
],
"roles": [
"all_access",
"own_index"
],
"custom_attribute_names": [],
"user_requested_tenant": "__user__"
}
}
}
Returns all anomaly detectors for a search query.
GET _opendistro/_anomaly_detection/detectors/_search
POST _opendistro/_anomaly_detection/detectors/_search
Sample Input:
{
"query": {
"match": {
"name": "test-detector"
}
}
}
{
"took": 13,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 994,
"relation": "eq"
},
"max_score": 3.5410638,
"hits": [
{
"_index": ".opendistro-anomaly-detectors",
"_type": "_doc",
"_id": "m4ccEnIBTXsGi3mvMt9p",
"_version": 2,
"_seq_no": 221,
"_primary_term": 1,
"_score": 3.5410638,
"_source": {
"name": "test-detector",
"description": "Test detector",
"time_field": "timestamp",
"indices": [
"order*"
],
"filter_query": {
"bool": {
"filter": [
{
"exists": {
"field": "value",
"boost": 1
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 10,
"unit": "MINUTES"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "MINUTES"
}
},
"schema_version": 0,
"feature_attributes": [
{
"feature_id": "xxokEnIBcpeWMD987A1X",
"feature_name": "total_order",
"feature_enabled": true,
"aggregation_query": {
"total_order": {
"sum": {
"field": "value"
}
}
}
}
],
"last_update_time": 1589442309241
}
}
]
}
}
Provides information about how the plugin is performing.
GET _opendistro/_anomaly_detection/stats
GET _opendistro/_anomaly_detection/<nodeId>/stats
GET _opendistro/_anomaly_detection/<nodeId>/stats/<stat>
GET _opendistro/_anomaly_detection/stats/<stat>
{
"_nodes" : {
"total" : 3,
"successful" : 3,
"failed" : 0
},
"cluster_name" : "multi-node-run",
"anomaly_detectors_index_status" : "green",
"detector_count" : 1,
"models_checkpoint_index_status" : "green",
"anomaly_results_index_status" : "green",
"nodes" : {
"IgWDUfzFRzW0FWAXM5FGJw" : {
"ad_execute_request_count" : 8,
"ad_execute_failure_count" : 7,
"models" : [
{
"detector_id" : "m4ccEnIBTXsGi3mvMt9p",
"model_type" : "rcf",
"model_id" : "m4ccEnIBTXsGi3mvMt9p_model_rcf_0"
},
{
"detector_id" : "m4ccEnIBTXsGi3mvMt9p",
"model_type" : "threshold",
"model_id" : "m4ccEnIBTXsGi3mvMt9p_model_threshold"
}
]
},
"y7YUQWukQEWOYbfdEq13hQ" : {
"ad_execute_request_count" : 0,
"ad_execute_failure_count" : 0,
"models" : [ ]
},
"cDcGNsPoRAyRMlPP1m-vZw" : {
"ad_execute_request_count" : 0,
"ad_execute_failure_count" : 0,
"models" : [
{
"detector_id" : "m4ccEnIBTXsGi3mvMt9p",
"model_type" : "rcf",
"model_id" : "m4ccEnIBTXsGi3mvMt9p_model_rcf_2"
},
{
"detector_id" : "m4ccEnIBTXsGi3mvMt9p",
"model_type" : "rcf",
"model_id" : "m4ccEnIBTXsGi3mvMt9p_model_rcf_1"
}
]
}
}
}
Historical detectors contain additional fields:
{
"anomaly_detectors_index_status": "yellow",
"anomaly_detection_state_status": "yellow",
"historical_detector_count": 3,
"detector_count": 7,
"anomaly_detection_job_index_status": "yellow",
"models_checkpoint_index_status": "yellow",
"anomaly_results_index_status": "yellow",
"nodes": {
"Mz9HDZnuQwSCw0UiisxwWg": {
"ad_execute_request_count": 0,
"models": [],
"ad_canceled_batch_task_count": 2,
"ad_hc_execute_request_count": 0,
"ad_hc_execute_failure_count": 0,
"ad_execute_failure_count": 0,
"ad_batch_task_failure_count": 0,
"ad_executing_batch_task_count": 1,
"ad_total_batch_task_count": 8
}
}
}
Create a monitor to set up alerts for the detector.
POST _opendistro/_alerting/monitors
{
"type": "monitor",
"name": "test-monitor",
"enabled": true,
"schedule": {
"period": {
"interval": 20,
"unit": "MINUTES"
}
},
"inputs": [
{
"search": {
"indices": [
".opendistro-anomaly-results*"
],
"query": {
"size": 1,
"query": {
"bool": {
"filter": [
{
"range": {
"data_end_time": {
"from": "{{period_end}}||-20m",
"to": "{{period_end}}",
"include_lower": true,
"include_upper": true,
"boost": 1
}
}
},
{
"term": {
"detector_id": {
"value": "m4ccEnIBTXsGi3mvMt9p",
"boost": 1
}
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"sort": [
{
"anomaly_grade": {
"order": "desc"
}
},
{
"confidence": {
"order": "desc"
}
}
],
"aggregations": {
"max_anomaly_grade": {
"max": {
"field": "anomaly_grade"
}
}
}
}
}
}
],
"triggers": [
{
"name": "test-trigger",
"severity": "1",
"condition": {
"script": {
"source": "return ctx.results[0].aggregations.max_anomaly_grade.value != null && ctx.results[0].aggregations.max_anomaly_grade.value > 0.7 && ctx.results[0].hits.hits[0]._source.confidence > 0.7",
"lang": "painless"
}
},
"actions": [
{
"name": "test-action",
"destination_id": "ld7912sBlQ5JUWWFThoW",
"message_template": {
"source": "This is my message body."
},
"throttle_enabled": false,
"subject_template": {
"source": "TheSubject"
}
}
]
}
]
}
{
"_id": "OClTEnIBmSf7y6LP11Jz",
"_version": 1,
"_seq_no": 10,
"_primary_term": 1,
"monitor": {
"type": "monitor",
"schema_version": 1,
"name": "test-monitor",
"enabled": true,
"enabled_time": 1589445384043,
"schedule": {
"period": {
"interval": 20,
"unit": "MINUTES"
}
},
"inputs": [
{
"search": {
"indices": [
".opendistro-anomaly-results*"
],
"query": {
"size": 1,
"query": {
"bool": {
"filter": [
{
"range": {
"data_end_time": {
"from": "{{period_end}}||-20m",
"to": "{{period_end}}",
"include_lower": true,
"include_upper": true,
"boost": 1
}
}
},
{
"term": {
"detector_id": {
"value": "m4ccEnIBTXsGi3mvMt9p",
"boost": 1
}
}
}
],
"adjust_pure_negative": true,
"boost": 1
}
},
"sort": [
{
"anomaly_grade": {
"order": "desc"
}
},
{
"confidence": {
"order": "desc"
}
}
],
"aggregations": {
"max_anomaly_grade": {
"max": {
"field": "anomaly_grade"
}
}
}
}
}
}
],
"triggers": [
{
"id": "NilTEnIBmSf7y6LP11Jr",
"name": "test-trigger",
"severity": "1",
"condition": {
"script": {
"source": "return ctx.results[0].aggregations.max_anomaly_grade.value != null && ctx.results[0].aggregations.max_anomaly_grade.value > 0.7 && ctx.results[0].hits.hits[0]._source.confidence > 0.7",
"lang": "painless"
}
},
"actions": [
{
"id": "NylTEnIBmSf7y6LP11Jr",
"name": "test-action",
"destination_id": "ld7912sBlQ5JUWWFThoW",
"message_template": {
"source": "This is my message body.",
"lang": "mustache"
},
"throttle_enabled": false,
"subject_template": {
"source": "TheSubject",
"lang": "mustache"
}
}
]
}
],
"last_update_time": 1589445384043
}
}
Returns information related to the current state of the detector and memory usage, including current errors and shingle size, to help troubleshoot the detector.
This command helps locate logs by identifying the nodes that run the anomaly detector job for each detector.
It also helps track the initialization percentage, the required shingles, and the estimated time left.
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile/
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile?_all=true
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile/<type>
GET /_opendistro/_anomaly_detection/detectors/<detectorId>/_profile/<type1>,<type2>
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile
{
"state":"DISABLED",
"error":"Stopped detector: AD models memory usage exceeds our limit."
}
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile?_all=true&pretty
{
"state": "RUNNING",
"models": [
{
"model_id": "cneh7HEBHPICjJIdXdrR_model_rcf_2",
"model_size_in_bytes": 4456448,
"node_id": "VS29z70PSzOdHiEw4SoV9Q"
},
{
"model_id": "cneh7HEBHPICjJIdXdrR_model_rcf_1",
"model_size_in_bytes": 4456448,
"node_id": "VS29z70PSzOdHiEw4SoV9Q"
},
{
"model_id": "cneh7HEBHPICjJIdXdrR_model_threshold",
"node_id": "Og23iUroTdKrkwS-y89zLw"
},
{
"model_id": "cneh7HEBHPICjJIdXdrR_model_rcf_0",
"model_size_in_bytes": 4456448,
"node_id": "Og23iUroTdKrkwS-y89zLw"
}
],
"shingle_size": 8,
"coordinating_node": "Og23iUroTdKrkwS-y89zLw",
"total_size_in_bytes": 13369344,
"init_progress": {
"percentage": "70%",
"estimated_minutes_left": 77,
"needed_shingles": 77
}
}
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile/total_size_in_bytes
{
"total_size_in_bytes" : 13369344
}
If you have configured the category field, you can see the number of unique values in the field and also all the active entities with models running in memory. You can use this data to estimate the memory required for anomaly detection to help decide the size of your cluster. For example, if a detector has one million entities and only 10 of them are active in memory, then you need to scale up or scale out your cluster.
GET /_opendistro/_anomaly_detection/detectors/<detectorId>/_profile?_all=true&pretty
{
"state": "RUNNING",
"models": [
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997684",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
},
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997685",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
},
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997686",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
},
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997680",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
},
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997681",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
},
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997682",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
},
{
"model_id": "T4c3dXUBj-2IZN7itix__entity_i-00f28ec1eb8997683",
"model_size_in_bytes": 712480,
"node_id": "g6pmr547QR-CfpEvO67M4g"
}
],
"total_size_in_bytes": 4987360,
"init_progress": {
"percentage": "100%"
},
"total_entities": 7,
"active_entities": 7
}
The profile
operation also provides information about each entity, such as the entity’s last_sample_timestamp
and last_active_timestamp
.
No anomaly results for an entity indicates that either the entity doesn't have any sample data or its model is removed from the model cache.
last_sample_timestamp
shows the last document in the input data source index containing the entity, while last_active_timestamp
shows the timestamp when the entity’s model was last seen in the model cache.
GET /_opendistro/_anomaly_detection/detectors/<detectorId>/_profile?_all=true&entity=i-00f28ec1eb8997686
{
"category_field": "host",
"value": "i-00f28ec1eb8997686",
"is_active": true,
"last_active_timestamp": 1604026394879,
"last_sample_timestamp": 1604026394879,
"init_progress": {
"percentage": "100%"
},
"model": {
"model_id": "TFUdd3UBBwIAGQeRh5IS_entity_i-00f28ec1eb8997686",
"model_size_in_bytes": 712480,
"node_id": "MQ-bTBW3Q2uU_2zX3pyEQg"
},
"state": "RUNNING"
}
For a historical detector, specify _all
or ad_task
to see information about its latest task:
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile?_all
GET _opendistro/_anomaly_detection/detectors/<detectorId>/_profile/ad_task
{
"ad_task": {
"ad_task": {
"task_id": "JXxyG3YBv5IHYYfMlFS2",
"last_update_time": 1606778263543,
"state": "STOPPED",
"detector_id": "SwvxCHYBPhugfWD9QAL6",
"task_progress": 0.010480972,
"init_progress": 1,
"current_piece": 1578140400000,
"execution_start_time": 1606778262709,
"is_latest": true,
"task_type": "HISTORICAL",
"detector": {
"name": "historical_test1",
"description": "test",
"time_field": "timestamp",
"indices": [
"nab_art_daily_jumpsdown"
],
"filter_query": {
"match_all": {
"boost": 1
}
},
"detection_interval": {
"period": {
"interval": 5,
"unit": "Minutes"
}
},
"window_delay": {
"period": {
"interval": 1,
"unit": "Minutes"
}
},
"shingle_size": 8,
"schema_version": 0,
"feature_attributes": [
{
"feature_id": "zgvyCHYBPhugfWD9Ap_F",
"feature_name": "sum",
"feature_enabled": true,
"aggregation_query": {
"sum": {
"sum": {
"field": "value"
}
}
}
},
{
"feature_id": "zwvyCHYBPhugfWD9Ap_G",
"feature_name": "max",
"feature_enabled": true,
"aggregation_query": {
"max": {
"max": {
"field": "value"
}
}
}
}
],
"ui_metadata": {
"features": {
"max": {
"aggregationBy": "max",
"aggregationOf": "value",
"featureType": "simple_aggs"
},
"sum": {
"aggregationBy": "sum",
"aggregationOf": "value",
"featureType": "simple_aggs"
}
},
"filters": [],
"filterType": "simple_filter"
},
"last_update_time": 1606467935713,
"detector_type": "HISTORICAL_SIGLE_ENTITY",
"detection_date_range": {
"start_time": 1577840400000,
"end_time": 1606463775000
}
}
},
"shingle_size": 8,
"rcf_total_updates": 1994,
"threshold_model_trained": true,
"threshold_model_training_data_size": 0,
"node_id": "Q9yznwxvTz-yJxtz7rJlLg"
}
}