forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharith_uint256_tests.cpp
611 lines (535 loc) · 24.3 KB
/
arith_uint256_tests.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
// Copyright (c) 2011-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <arith_uint256.h>
#include <test/util/setup_common.h>
#include <uint256.h>
#include <boost/test/unit_test.hpp>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <limits>
#include <sstream>
#include <string>
#include <vector>
BOOST_AUTO_TEST_SUITE(arith_uint256_tests)
/// Convert vector to arith_uint256, via uint256 blob
static inline arith_uint256 arith_uint256V(const std::vector<unsigned char>& vch)
{
return UintToArith256(uint256(vch));
}
const unsigned char R1Array[] =
"\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2"
"\x22\x81\xaa\xb5\x33\xf0\x08\x32\xd5\x56\xb1\xf9\xea\xe5\x1d\x7d";
const char R1ArrayHex[] = "7D1DE5EAF9B156D53208F033B5AA8122D2d2355d5e12292b121156cfdb4a529c";
const double R1Ldouble = 0.4887374590559308955; // R1L equals roughly R1Ldouble * 2^256
const arith_uint256 R1L = arith_uint256V(std::vector<unsigned char>(R1Array,R1Array+32));
const uint64_t R1LLow64 = 0x121156cfdb4a529cULL;
const unsigned char R2Array[] =
"\x70\x32\x1d\x7c\x47\xa5\x6b\x40\x26\x7e\x0a\xc3\xa6\x9c\xb6\xbf"
"\x13\x30\x47\xa3\x19\x2d\xda\x71\x49\x13\x72\xf0\xb4\xca\x81\xd7";
const arith_uint256 R2L = arith_uint256V(std::vector<unsigned char>(R2Array,R2Array+32));
const unsigned char ZeroArray[] =
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
const arith_uint256 ZeroL = arith_uint256V(std::vector<unsigned char>(ZeroArray,ZeroArray+32));
const unsigned char OneArray[] =
"\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
const arith_uint256 OneL = arith_uint256V(std::vector<unsigned char>(OneArray,OneArray+32));
const unsigned char MaxArray[] =
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff";
const arith_uint256 MaxL = arith_uint256V(std::vector<unsigned char>(MaxArray,MaxArray+32));
const arith_uint256 HalfL = (OneL << 255);
static std::string ArrayToString(const unsigned char A[], unsigned int width)
{
std::stringstream Stream;
Stream << std::hex;
for (unsigned int i = 0; i < width; ++i)
{
Stream<<std::setw(2)<<std::setfill('0')<<(unsigned int)A[width-i-1];
}
return Stream.str();
}
BOOST_AUTO_TEST_CASE( basics ) // constructors, equality, inequality
{
BOOST_CHECK(1 == 0+1);
// constructor arith_uint256(vector<char>):
BOOST_CHECK(R1L.ToString() == ArrayToString(R1Array,32));
BOOST_CHECK(R2L.ToString() == ArrayToString(R2Array,32));
BOOST_CHECK(ZeroL.ToString() == ArrayToString(ZeroArray,32));
BOOST_CHECK(OneL.ToString() == ArrayToString(OneArray,32));
BOOST_CHECK(MaxL.ToString() == ArrayToString(MaxArray,32));
BOOST_CHECK(OneL.ToString() != ArrayToString(ZeroArray,32));
// == and !=
BOOST_CHECK(R1L != R2L);
BOOST_CHECK(ZeroL != OneL);
BOOST_CHECK(OneL != ZeroL);
BOOST_CHECK(MaxL != ZeroL);
BOOST_CHECK(~MaxL == ZeroL);
BOOST_CHECK( ((R1L ^ R2L) ^ R1L) == R2L);
uint64_t Tmp64 = 0xc4dab720d9c7acaaULL;
for (unsigned int i = 0; i < 256; ++i)
{
BOOST_CHECK(ZeroL != (OneL << i));
BOOST_CHECK((OneL << i) != ZeroL);
BOOST_CHECK(R1L != (R1L ^ (OneL << i)));
BOOST_CHECK(((arith_uint256(Tmp64) ^ (OneL << i) ) != Tmp64 ));
}
BOOST_CHECK(ZeroL == (OneL << 256));
// Construct from hex string
BOOST_CHECK_EQUAL(UintToArith256(uint256::FromHex(R1L.ToString()).value()), R1L);
BOOST_CHECK_EQUAL(UintToArith256(uint256::FromHex(R2L.ToString()).value()), R2L);
BOOST_CHECK_EQUAL(UintToArith256(uint256::FromHex(ZeroL.ToString()).value()), ZeroL);
BOOST_CHECK_EQUAL(UintToArith256(uint256::FromHex(OneL.ToString()).value()), OneL);
BOOST_CHECK_EQUAL(UintToArith256(uint256::FromHex(MaxL.ToString()).value()), MaxL);
BOOST_CHECK_EQUAL(UintToArith256(uint256::FromHex(R1ArrayHex).value()), R1L);
// Copy constructor
BOOST_CHECK(arith_uint256(R1L) == R1L);
BOOST_CHECK((arith_uint256(R1L^R2L)^R2L) == R1L);
BOOST_CHECK(arith_uint256(ZeroL) == ZeroL);
BOOST_CHECK(arith_uint256(OneL) == OneL);
// uint64_t constructor
BOOST_CHECK_EQUAL(R1L & arith_uint256{0xffffffffffffffff}, arith_uint256{R1LLow64});
BOOST_CHECK_EQUAL(ZeroL, arith_uint256{0});
BOOST_CHECK_EQUAL(OneL, arith_uint256{1});
BOOST_CHECK_EQUAL(arith_uint256{0xffffffffffffffff}, arith_uint256{0xffffffffffffffffULL});
// Assignment (from base_uint)
arith_uint256 tmpL = ~ZeroL; BOOST_CHECK(tmpL == ~ZeroL);
tmpL = ~OneL; BOOST_CHECK(tmpL == ~OneL);
tmpL = ~R1L; BOOST_CHECK(tmpL == ~R1L);
tmpL = ~R2L; BOOST_CHECK(tmpL == ~R2L);
tmpL = ~MaxL; BOOST_CHECK(tmpL == ~MaxL);
}
static void shiftArrayRight(unsigned char* to, const unsigned char* from, unsigned int arrayLength, unsigned int bitsToShift)
{
for (unsigned int T=0; T < arrayLength; ++T)
{
unsigned int F = (T+bitsToShift/8);
if (F < arrayLength)
to[T] = uint8_t(from[F] >> (bitsToShift % 8));
else
to[T] = 0;
if (F + 1 < arrayLength)
to[T] |= uint8_t(from[(F + 1)] << (8 - bitsToShift % 8));
}
}
static void shiftArrayLeft(unsigned char* to, const unsigned char* from, unsigned int arrayLength, unsigned int bitsToShift)
{
for (unsigned int T=0; T < arrayLength; ++T)
{
if (T >= bitsToShift/8)
{
unsigned int F = T-bitsToShift/8;
to[T] = uint8_t(from[F] << (bitsToShift % 8));
if (T >= bitsToShift/8+1)
to[T] |= uint8_t(from[F - 1] >> (8 - bitsToShift % 8));
}
else {
to[T] = 0;
}
}
}
BOOST_AUTO_TEST_CASE( shifts ) { // "<<" ">>" "<<=" ">>="
unsigned char TmpArray[32];
arith_uint256 TmpL;
for (unsigned int i = 0; i < 256; ++i)
{
shiftArrayLeft(TmpArray, OneArray, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (OneL << i));
TmpL = OneL; TmpL <<= i;
BOOST_CHECK(TmpL == (OneL << i));
BOOST_CHECK((HalfL >> (255-i)) == (OneL << i));
TmpL = HalfL; TmpL >>= (255-i);
BOOST_CHECK(TmpL == (OneL << i));
shiftArrayLeft(TmpArray, R1Array, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (R1L << i));
TmpL = R1L; TmpL <<= i;
BOOST_CHECK(TmpL == (R1L << i));
shiftArrayRight(TmpArray, R1Array, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (R1L >> i));
TmpL = R1L; TmpL >>= i;
BOOST_CHECK(TmpL == (R1L >> i));
shiftArrayLeft(TmpArray, MaxArray, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (MaxL << i));
TmpL = MaxL; TmpL <<= i;
BOOST_CHECK(TmpL == (MaxL << i));
shiftArrayRight(TmpArray, MaxArray, 32, i);
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (MaxL >> i));
TmpL = MaxL; TmpL >>= i;
BOOST_CHECK(TmpL == (MaxL >> i));
}
arith_uint256 c1L = arith_uint256(0x0123456789abcdefULL);
arith_uint256 c2L = c1L << 128;
for (unsigned int i = 0; i < 128; ++i) {
BOOST_CHECK((c1L << i) == (c2L >> (128-i)));
}
for (unsigned int i = 128; i < 256; ++i) {
BOOST_CHECK((c1L << i) == (c2L << (i-128)));
}
}
BOOST_AUTO_TEST_CASE( unaryOperators ) // ! ~ -
{
BOOST_CHECK(~ZeroL == MaxL);
unsigned char TmpArray[32];
for (unsigned int i = 0; i < 32; ++i) { TmpArray[i] = uint8_t(~R1Array[i]); }
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (~R1L));
BOOST_CHECK(-ZeroL == ZeroL);
BOOST_CHECK(-R1L == (~R1L)+1);
for (unsigned int i = 0; i < 256; ++i)
BOOST_CHECK(-(OneL<<i) == (MaxL << i));
}
// Check if doing _A_ _OP_ _B_ results in the same as applying _OP_ onto each
// element of Aarray and Barray, and then converting the result into an arith_uint256.
#define CHECKBITWISEOPERATOR(_A_,_B_,_OP_) \
for (unsigned int i = 0; i < 32; ++i) { TmpArray[i] = uint8_t(_A_##Array[i] _OP_ _B_##Array[i]); } \
BOOST_CHECK(arith_uint256V(std::vector<unsigned char>(TmpArray,TmpArray+32)) == (_A_##L _OP_ _B_##L));
#define CHECKASSIGNMENTOPERATOR(_A_,_B_,_OP_) \
TmpL = _A_##L; TmpL _OP_##= _B_##L; BOOST_CHECK(TmpL == (_A_##L _OP_ _B_##L));
BOOST_AUTO_TEST_CASE( bitwiseOperators )
{
unsigned char TmpArray[32];
CHECKBITWISEOPERATOR(R1,R2,|)
CHECKBITWISEOPERATOR(R1,R2,^)
CHECKBITWISEOPERATOR(R1,R2,&)
CHECKBITWISEOPERATOR(R1,Zero,|)
CHECKBITWISEOPERATOR(R1,Zero,^)
CHECKBITWISEOPERATOR(R1,Zero,&)
CHECKBITWISEOPERATOR(R1,Max,|)
CHECKBITWISEOPERATOR(R1,Max,^)
CHECKBITWISEOPERATOR(R1,Max,&)
CHECKBITWISEOPERATOR(Zero,R1,|)
CHECKBITWISEOPERATOR(Zero,R1,^)
CHECKBITWISEOPERATOR(Zero,R1,&)
CHECKBITWISEOPERATOR(Max,R1,|)
CHECKBITWISEOPERATOR(Max,R1,^)
CHECKBITWISEOPERATOR(Max,R1,&)
arith_uint256 TmpL;
CHECKASSIGNMENTOPERATOR(R1,R2,|)
CHECKASSIGNMENTOPERATOR(R1,R2,^)
CHECKASSIGNMENTOPERATOR(R1,R2,&)
CHECKASSIGNMENTOPERATOR(R1,Zero,|)
CHECKASSIGNMENTOPERATOR(R1,Zero,^)
CHECKASSIGNMENTOPERATOR(R1,Zero,&)
CHECKASSIGNMENTOPERATOR(R1,Max,|)
CHECKASSIGNMENTOPERATOR(R1,Max,^)
CHECKASSIGNMENTOPERATOR(R1,Max,&)
CHECKASSIGNMENTOPERATOR(Zero,R1,|)
CHECKASSIGNMENTOPERATOR(Zero,R1,^)
CHECKASSIGNMENTOPERATOR(Zero,R1,&)
CHECKASSIGNMENTOPERATOR(Max,R1,|)
CHECKASSIGNMENTOPERATOR(Max,R1,^)
CHECKASSIGNMENTOPERATOR(Max,R1,&)
uint64_t Tmp64 = 0xe1db685c9a0b47a2ULL;
TmpL = R1L; TmpL |= Tmp64; BOOST_CHECK(TmpL == (R1L | arith_uint256(Tmp64)));
TmpL = R1L; TmpL |= 0; BOOST_CHECK(TmpL == R1L);
TmpL ^= 0; BOOST_CHECK(TmpL == R1L);
TmpL ^= Tmp64; BOOST_CHECK(TmpL == (R1L ^ arith_uint256(Tmp64)));
}
BOOST_AUTO_TEST_CASE( comparison ) // <= >= < >
{
arith_uint256 TmpL;
for (unsigned int i = 0; i < 256; ++i) {
TmpL= OneL<< i;
BOOST_CHECK( TmpL >= ZeroL && TmpL > ZeroL && ZeroL < TmpL && ZeroL <= TmpL);
BOOST_CHECK( TmpL >= 0 && TmpL > 0 && 0 < TmpL && 0 <= TmpL);
TmpL |= R1L;
BOOST_CHECK( TmpL >= R1L ); BOOST_CHECK( (TmpL == R1L) != (TmpL > R1L)); BOOST_CHECK( (TmpL == R1L) || !( TmpL <= R1L));
BOOST_CHECK( R1L <= TmpL ); BOOST_CHECK( (R1L == TmpL) != (R1L < TmpL)); BOOST_CHECK( (TmpL == R1L) || !( R1L >= TmpL));
BOOST_CHECK(! (TmpL < R1L)); BOOST_CHECK(! (R1L > TmpL));
}
BOOST_CHECK_LT(ZeroL,
OneL);
}
BOOST_AUTO_TEST_CASE( plusMinus )
{
arith_uint256 TmpL = 0;
BOOST_CHECK_EQUAL(R1L + R2L, UintToArith256(uint256{"549fb09fea236a1ea3e31d4d58f1b1369288d204211ca751527cfc175767850c"}));
TmpL += R1L;
BOOST_CHECK(TmpL == R1L);
TmpL += R2L;
BOOST_CHECK(TmpL == R1L + R2L);
BOOST_CHECK(OneL+MaxL == ZeroL);
BOOST_CHECK(MaxL+OneL == ZeroL);
for (unsigned int i = 1; i < 256; ++i) {
BOOST_CHECK( (MaxL >> i) + OneL == (HalfL >> (i-1)) );
BOOST_CHECK( OneL + (MaxL >> i) == (HalfL >> (i-1)) );
TmpL = (MaxL>>i); TmpL += OneL;
BOOST_CHECK( TmpL == (HalfL >> (i-1)) );
TmpL = (MaxL>>i); TmpL += 1;
BOOST_CHECK( TmpL == (HalfL >> (i-1)) );
TmpL = (MaxL>>i);
BOOST_CHECK( TmpL++ == (MaxL>>i) );
BOOST_CHECK( TmpL == (HalfL >> (i-1)));
}
BOOST_CHECK(arith_uint256(0xbedc77e27940a7ULL) + 0xee8d836fce66fbULL == arith_uint256(0xbedc77e27940a7ULL + 0xee8d836fce66fbULL));
TmpL = arith_uint256(0xbedc77e27940a7ULL); TmpL += 0xee8d836fce66fbULL;
BOOST_CHECK(TmpL == arith_uint256(0xbedc77e27940a7ULL+0xee8d836fce66fbULL));
TmpL -= 0xee8d836fce66fbULL; BOOST_CHECK(TmpL == 0xbedc77e27940a7ULL);
TmpL = R1L;
BOOST_CHECK(++TmpL == R1L+1);
BOOST_CHECK(R1L -(-R2L) == R1L+R2L);
BOOST_CHECK(R1L -(-OneL) == R1L+OneL);
BOOST_CHECK(R1L - OneL == R1L+(-OneL));
for (unsigned int i = 1; i < 256; ++i) {
BOOST_CHECK((MaxL>>i) - (-OneL) == (HalfL >> (i-1)));
BOOST_CHECK((HalfL >> (i-1)) - OneL == (MaxL>>i));
TmpL = (HalfL >> (i-1));
BOOST_CHECK(TmpL-- == (HalfL >> (i-1)));
BOOST_CHECK(TmpL == (MaxL >> i));
TmpL = (HalfL >> (i-1));
BOOST_CHECK(--TmpL == (MaxL >> i));
}
TmpL = R1L;
BOOST_CHECK(--TmpL == R1L-1);
}
BOOST_AUTO_TEST_CASE( multiply )
{
BOOST_CHECK((R1L * R1L).ToString() == "62a38c0486f01e45879d7910a7761bf30d5237e9873f9bff3642a732c4d84f10");
BOOST_CHECK((R1L * R2L).ToString() == "de37805e9986996cfba76ff6ba51c008df851987d9dd323f0e5de07760529c40");
BOOST_CHECK((R1L * ZeroL) == ZeroL);
BOOST_CHECK((R1L * OneL) == R1L);
BOOST_CHECK((R1L * MaxL) == -R1L);
BOOST_CHECK((R2L * R1L) == (R1L * R2L));
BOOST_CHECK((R2L * R2L).ToString() == "ac8c010096767d3cae5005dec28bb2b45a1d85ab7996ccd3e102a650f74ff100");
BOOST_CHECK((R2L * ZeroL) == ZeroL);
BOOST_CHECK((R2L * OneL) == R2L);
BOOST_CHECK((R2L * MaxL) == -R2L);
BOOST_CHECK(MaxL * MaxL == OneL);
BOOST_CHECK((R1L * 0) == 0);
BOOST_CHECK((R1L * 1) == R1L);
BOOST_CHECK((R1L * 3).ToString() == "7759b1c0ed14047f961ad09b20ff83687876a0181a367b813634046f91def7d4");
BOOST_CHECK((R2L * 0x87654321UL).ToString() == "23f7816e30c4ae2017257b7a0fa64d60402f5234d46e746b61c960d09a26d070");
}
BOOST_AUTO_TEST_CASE( divide )
{
arith_uint256 D1L{UintToArith256(uint256{"00000000000000000000000000000000000000000000000ad7133ac1977fa2b7"})};
arith_uint256 D2L{UintToArith256(uint256{"0000000000000000000000000000000000000000000000000000000ecd751716"})};
BOOST_CHECK((R1L / D1L).ToString() == "00000000000000000b8ac01106981635d9ed112290f8895545a7654dde28fb3a");
BOOST_CHECK((R1L / D2L).ToString() == "000000000873ce8efec5b67150bad3aa8c5fcb70e947586153bf2cec7c37c57a");
BOOST_CHECK(R1L / OneL == R1L);
BOOST_CHECK(R1L / MaxL == ZeroL);
BOOST_CHECK(MaxL / R1L == 2);
BOOST_CHECK_THROW(R1L / ZeroL, uint_error);
BOOST_CHECK((R2L / D1L).ToString() == "000000000000000013e1665895a1cc981de6d93670105a6b3ec3b73141b3a3c5");
BOOST_CHECK((R2L / D2L).ToString() == "000000000e8f0abe753bb0afe2e9437ee85d280be60882cf0bd1aaf7fa3cc2c4");
BOOST_CHECK(R2L / OneL == R2L);
BOOST_CHECK(R2L / MaxL == ZeroL);
BOOST_CHECK(MaxL / R2L == 1);
BOOST_CHECK_THROW(R2L / ZeroL, uint_error);
}
static bool almostEqual(double d1, double d2)
{
return fabs(d1-d2) <= 4*fabs(d1)*std::numeric_limits<double>::epsilon();
}
BOOST_AUTO_TEST_CASE(methods) // GetHex operator= size() GetLow64 GetSerializeSize, Serialize, Unserialize
{
BOOST_CHECK(R1L.GetHex() == R1L.ToString());
BOOST_CHECK(R2L.GetHex() == R2L.ToString());
BOOST_CHECK(OneL.GetHex() == OneL.ToString());
BOOST_CHECK(MaxL.GetHex() == MaxL.ToString());
arith_uint256 TmpL(R1L);
BOOST_CHECK(TmpL == R1L);
TmpL = R2L;
BOOST_CHECK(TmpL == R2L);
TmpL = ZeroL;
BOOST_CHECK(TmpL == 0);
TmpL = HalfL;
BOOST_CHECK(TmpL == HalfL);
TmpL = R1L;
BOOST_CHECK(R1L.size() == 32);
BOOST_CHECK(R2L.size() == 32);
BOOST_CHECK(ZeroL.size() == 32);
BOOST_CHECK(MaxL.size() == 32);
BOOST_CHECK(R1L.GetLow64() == R1LLow64);
BOOST_CHECK(HalfL.GetLow64() ==0x0000000000000000ULL);
BOOST_CHECK(OneL.GetLow64() ==0x0000000000000001ULL);
for (unsigned int i = 0; i < 255; ++i)
{
BOOST_CHECK((OneL << i).getdouble() == ldexp(1.0,i));
}
BOOST_CHECK(ZeroL.getdouble() == 0.0);
for (int i = 256; i > 53; --i)
BOOST_CHECK(almostEqual((R1L>>(256-i)).getdouble(), ldexp(R1Ldouble,i)));
uint64_t R1L64part = (R1L>>192).GetLow64();
for (int i = 53; i > 0; --i) // doubles can store all integers in {0,...,2^54-1} exactly
{
BOOST_CHECK((R1L>>(256-i)).getdouble() == (double)(R1L64part >> (64-i)));
}
}
BOOST_AUTO_TEST_CASE(bignum_SetCompact)
{
arith_uint256 num;
bool fNegative;
bool fOverflow;
num.SetCompact(0, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x00123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x01003456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x02000056, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x03000000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04000000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x00923456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x01803456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x02800056, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x03800000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04800000, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x01123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000012");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x01120000U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
// Make sure that we don't generate compacts with the 0x00800000 bit set
num = 0x80;
BOOST_CHECK_EQUAL(num.GetCompact(), 0x02008000U);
num.SetCompact(0x01fedcba, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "000000000000000000000000000000000000000000000000000000000000007e");
BOOST_CHECK_EQUAL(num.GetCompact(true), 0x01fe0000U);
BOOST_CHECK_EQUAL(fNegative, true);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x02123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000001234");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x02123400U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x03123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000000123456");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x03123456U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000012345600");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x04123456U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x04923456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000012345600");
BOOST_CHECK_EQUAL(num.GetCompact(true), 0x04923456U);
BOOST_CHECK_EQUAL(fNegative, true);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x05009234, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "0000000000000000000000000000000000000000000000000000000092340000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x05009234U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0x20123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(num.GetHex(), "1234560000000000000000000000000000000000000000000000000000000000");
BOOST_CHECK_EQUAL(num.GetCompact(), 0x20123456U);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, false);
num.SetCompact(0xff123456, &fNegative, &fOverflow);
BOOST_CHECK_EQUAL(fNegative, false);
BOOST_CHECK_EQUAL(fOverflow, true);
}
BOOST_AUTO_TEST_CASE( getmaxcoverage ) // some more tests just to get 100% coverage
{
// ~R1L give a base_uint<256>
BOOST_CHECK((~~R1L >> 10) == (R1L >> 10));
BOOST_CHECK((~~R1L << 10) == (R1L << 10));
BOOST_CHECK(!(~~R1L < R1L));
BOOST_CHECK(~~R1L <= R1L);
BOOST_CHECK(!(~~R1L > R1L));
BOOST_CHECK(~~R1L >= R1L);
BOOST_CHECK(!(R1L < ~~R1L));
BOOST_CHECK(R1L <= ~~R1L);
BOOST_CHECK(!(R1L > ~~R1L));
BOOST_CHECK(R1L >= ~~R1L);
BOOST_CHECK(~~R1L + R2L == R1L + ~~R2L);
BOOST_CHECK(~~R1L - R2L == R1L - ~~R2L);
BOOST_CHECK(~R1L != R1L); BOOST_CHECK(R1L != ~R1L);
unsigned char TmpArray[32];
CHECKBITWISEOPERATOR(~R1,R2,|)
CHECKBITWISEOPERATOR(~R1,R2,^)
CHECKBITWISEOPERATOR(~R1,R2,&)
CHECKBITWISEOPERATOR(R1,~R2,|)
CHECKBITWISEOPERATOR(R1,~R2,^)
CHECKBITWISEOPERATOR(R1,~R2,&)
}
BOOST_AUTO_TEST_CASE(conversion)
{
for (const arith_uint256& arith : {ZeroL, OneL, R1L, R2L}) {
const auto u256{uint256::FromHex(arith.GetHex()).value()};
BOOST_CHECK_EQUAL(UintToArith256(ArithToUint256(arith)), arith);
BOOST_CHECK_EQUAL(UintToArith256(u256), arith);
BOOST_CHECK_EQUAL(u256, ArithToUint256(arith));
BOOST_CHECK_EQUAL(ArithToUint256(arith).GetHex(), UintToArith256(u256).GetHex());
}
for (uint8_t num : {0, 1, 0xff}) {
BOOST_CHECK_EQUAL(UintToArith256(uint256{num}), arith_uint256{num});
BOOST_CHECK_EQUAL(uint256{num}, ArithToUint256(arith_uint256{num}));
BOOST_CHECK_EQUAL(UintToArith256(uint256{num}), num);
}
}
BOOST_AUTO_TEST_CASE(operator_with_self)
{
/* Clang 16 and earlier detects v -= v and v /= v as self-assignments
to 0 and 1 respectively.
See: https://github.com/llvm/llvm-project/issues/42469
and the fix in commit c5302325b2a62d77cf13dd16cd5c19141862fed0 .
This makes some sense for arithmetic classes, but could be considered a bug
elsewhere. Disable the warning here so that the code can be tested, but the
warning should remain on as there will likely always be a better way to
express this.
*/
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wself-assign-overloaded"
#endif
arith_uint256 v{2};
v *= v;
BOOST_CHECK_EQUAL(v, arith_uint256{4});
v /= v;
BOOST_CHECK_EQUAL(v, arith_uint256{1});
v += v;
BOOST_CHECK_EQUAL(v, arith_uint256{2});
v -= v;
BOOST_CHECK_EQUAL(v, arith_uint256{0});
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
}
BOOST_AUTO_TEST_SUITE_END()