forked from zzmcdc/face-eval
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloadData.py
132 lines (116 loc) · 3.59 KB
/
loadData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
from database import *
from operator import itemgetter, attrgetter
import util
import os
import glob
def loadDetections(fn):
"""
load detections from fn in the different formats
"""
dets = []
print ("loading ", fn)
if os.path.splitext(fn)[1] == ".txt":
dets = loadDetectionsPascalFormat(fn)
elif os.path.splitext(fn)[1] == ".ramananmat":
dets = loadDetectionsRamanan(fn)
elif os.path.splitext(fn)[1] == ".shenmat":
dets = loadDetectionsShen(fn)
elif os.path.splitext(fn)[1] == ".mat":
dets = loadDetectionsYann(fn)
elif os.path.splitext(fn)[1] == ".csv":
dets = loadDetectionsCSV(fn)
else:
print (fn)
raise Exception("Detection file format not supported")
return dets
def loadDetectionsYann(fn):
f = util.loadmat(fn)
det = []
widths = []
heights = []
size = f['ids'].shape[0]
bb = f['BB']
for i in range(size):
key = f['ids'][i][0][0].split('.')[0]
conf = float(f['confidence'][i][0])
if f.has_key("del"):
if f["del"][i] == 1:
continue
x1 = float(bb[0][i])
y1 = float(bb[1][i])
x2 = float(bb[2][i])
y2 = float(bb[3][i])
det.append([key, conf, x1, y1, x2, y2])
dets = sorted(det, key=itemgetter(1), reverse=True)
return dets
def loadDetectionsShen(fn):
f = util.loadmat(fn)
det = []
for idl, dd in enumerate(f["DetectionResults"]):
for ff in dd[0][0]["faces"][0]:
det.append([dd[0][0]["filename"][0][0].split(
"\\")[-1].split(".")[0], ff[4], ff[0], ff[1], ff[0] + ff[2], ff[1] + ff[3]])
dets = sorted(det, key=itemgetter(1), reverse=True)
return det
def loadDetectionsCSV(fn):
import csv
f = open(fn, "rb")
rd = csv.reader(f, delimiter=";")
det = []
rd.next()
for idl, dd in enumerate(rd):
det.append([dd[2].split(".")[0], 1, int(dd[7]), int(
dd[8]), int(dd[7]) + int(dd[9]), int(dd[8]) + int(dd[10])])
dets = sorted(det, key=itemgetter(1), reverse=True)
return det
def loadDetectionsPascalFormat(f):
ff = open(f)
fdet = ff.readlines()
det = []
for idl, l in enumerate(fdet):
dd = l.strip().split(" ")
score = float(dd[1])
dd[2] = float(dd[2])
dd[3] = float(dd[3])
dd[4] = float(dd[4])
dd[5] = float(dd[5])
w = float(dd[4]) - float(dd[2])
h = float(dd[5]) - float(dd[3])
det.append([dd[0].split('.')[0], score, dd[2], dd[3], dd[4], dd[5]])
dets = sorted(det, key=itemgetter(1), reverse=True)
return dets
def loadDetectionsRamanan(fn):
f = util.loadmat(fn)
ids = f['ids']
scores = []
if f.has_key('sc'):
scores = f['sc']
boxes = f['BB']
n = len(ids)
det = []
for i in range(n):
this_id = ids[i][0][0].split(".")[0]
if not scores == []:
this_score = scores[i][0]
else:
this_score = 1.0
box = boxes[:, i]
x1 = float(box[0])
y1 = float(box[1])
x2 = float(box[2])
y2 = float(box[3])
det.append([this_id, this_score, x1, y1, x2, y2])
if 0:
im = util.myimread(
"/users/visics/mpederso/databases/afw/testimages/" + this_id + ".jpg")
pylab.clf()
pylab.imshow(im)
util.box([y1, x1, y2, x2])
pylab.draw()
pylab.show()
raw_input()
dets = sorted(det, key=itemgetter(1), reverse=True)
return dets