diff --git a/.gitignore b/.gitignore index 113c8625e..10d0cc4fe 100644 --- a/.gitignore +++ b/.gitignore @@ -25,7 +25,7 @@ build/ *.whl # dev -simba/sandbox/pose_estimation +simba/sandbox/ #local docs build _build/html/ diff --git a/simba/labelling/labelling_interface.py b/simba/labelling/labelling_interface.py index 16d23f0fe..f7fe49026 100644 --- a/simba/labelling/labelling_interface.py +++ b/simba/labelling/labelling_interface.py @@ -19,18 +19,12 @@ import simba from simba.mixins.config_reader import ConfigReader from simba.ui.tkinter_functions import Entry_Box -from simba.utils.checks import (check_file_exist_and_readable, check_float, - check_int, check_str, check_that_column_exist, - check_valid_boolean, check_valid_dataframe, - check_valid_dict) +from simba.utils.checks import (check_file_exist_and_readable, check_float, check_int, check_str, check_that_column_exist, check_valid_boolean, check_valid_dataframe, check_valid_dict) from simba.utils.enums import Options, TagNames from simba.utils.errors import FrameRangeError, NoDataError, NoFilesFoundError -from simba.utils.lookups import (get_labelling_img_kbd_bindings, - get_labelling_video_kbd_bindings) +from simba.utils.lookups import (get_labelling_img_kbd_bindings, get_labelling_video_kbd_bindings) from simba.utils.printing import log_event, stdout_success -from simba.utils.read_write import (get_all_clf_names, get_fn_ext, - get_video_meta_data, read_config_entry, - read_df, read_frm_of_video, write_df) +from simba.utils.read_write import (get_all_clf_names, get_fn_ext, get_video_meta_data, read_config_entry, read_df, read_frm_of_video, write_df) from simba.utils.warnings import FrameRangeWarning PLAY_VIDEO_SCRIPT_PATH = os.path.join(os.path.dirname(simba.__file__), "labelling/play_annotation_video.py") diff --git a/simba/mixins/train_model_mixin.py b/simba/mixins/train_model_mixin.py index 139d782eb..fb606f015 100644 --- a/simba/mixins/train_model_mixin.py +++ b/simba/mixins/train_model_mixin.py @@ -805,7 +805,7 @@ def create_shap_log(self, plot: bool = True, save_it: Optional[int] = 100, save_dir: Optional[Union[str, os.PathLike]] = None, - save_file_suffix: Optional[int] = None) -> Union[None, Tuple[pd.DataFrame]]: + save_file_suffix: Optional[int] = None) -> Union[None, Tuple[pd.DataFrame, pd.DataFrame, Dict[str, pd.DataFrame], np.ndarray]]: """ Compute SHAP values for a random forest classifier. @@ -1675,9 +1675,7 @@ def read_all_files_in_folder_mp_futures(self, raise_bool_clf_error=raise_bool_clf_error, ) - def check_raw_dataset_integrity( - self, df: pd.DataFrame, logs_path: Optional[Union[str, os.PathLike]] - ) -> None: + def check_raw_dataset_integrity(self, df: pd.DataFrame, logs_path: Optional[Union[str, os.PathLike]]) -> None: """ Helper to check column-wise NaNs in raw input data for fitting model. @@ -1744,7 +1742,7 @@ def create_shap_log_mp(self, verbose: bool = True, save_dir: Optional[Union[str, os.PathLike]] = None, save_file_suffix: Optional[int] = None, - plot: bool = False) -> Union[None, Tuple[pd.DataFrame]]: + plot: bool = False) -> Union[None, Tuple[pd.DataFrame, pd.DataFrame, Dict[str, pd.DataFrame], np.ndarray]]: """ Compute SHAP values using multiprocessing. @@ -1814,29 +1812,24 @@ def create_shap_log_mp(self, if len(absent_df) < cnt_absent: NotEnoughDataWarning(msg=f"Train data contains {len(absent_df)} behavior-absent annotations. This is less the number of frames you specified to calculate shap values for ({str(cnt_absent)}). SimBA will calculate shap scores for the {len(absent_df)} behavior-absent frames available", source=TrainModelMixin.create_shap_log_mp.__name__) cnt_absent = len(absent_df) - shap_data = pd.concat( - [present_df.sample(cnt_present, replace=False), absent_df.sample(cnt_absent, replace=False)], - axis=0).reset_index(drop=True) + shap_data = pd.concat([present_df.sample(cnt_present, replace=False), absent_df.sample(cnt_absent, replace=False)], axis=0).reset_index(drop=True) batch_cnt = max(1, int(np.ceil(len(shap_data) / chunk_size))) shap_data = np.array_split(shap_data, batch_cnt) shap_data = [(x, y) for x, y in enumerate(shap_data)] explainer = TrainModelMixin().define_tree_explainer(clf=rf_clf) expected_value = explainer.expected_value[1] shap_results, shap_raw = [], [] - print( - f"Computing {cnt_present + cnt_absent} SHAP values. Follow progress in OS terminal... (CORES: {core_cnt}, CHUNK SIZE: {chunk_size})") + print(f"Computing {cnt_present + cnt_absent} SHAP values. Follow progress in OS terminal... (CORES: {core_cnt}, CHUNK SIZE: {chunk_size})") with multiprocessing.Pool(core_cnt, maxtasksperchild=Defaults.MAXIMUM_MAX_TASK_PER_CHILD.value) as pool: constants = functools.partial(TrainModelMixin._create_shap_mp_helper, explainer=explainer, clf_name=clf_name, verbose=verbose) for cnt, result in enumerate(pool.imap_unordered(constants, shap_data, chunksize=1)): - proba = TrainModelMixin().clf_predict_proba(clf=rf_clf, - x_df=shap_data[result[1]][1].drop(clf_name, axis=1), - model_name=clf_name).reshape(-1, 1) + proba = TrainModelMixin().clf_predict_proba(clf=rf_clf, x_df=shap_data[result[1]][1].drop(clf_name, axis=1), model_name=clf_name).reshape(-1, 1) shap_sum = np.sum(result[0], axis=1).reshape(-1, 1) - batch_shap_results = np.hstack((result[0], np.full((result[0].shape[0]), expected_value).reshape(-1, 1), shap_sum, proba, shap_data[result[1]][1][clf_name].values.reshape(-1, 1))).astype(np.float32) + batch_shap_results = np.hstack((result[0], np.full((result[0].shape[0]), expected_value).reshape(-1, 1), shap_sum + expected_value, proba, shap_data[result[1]][1][clf_name].values.reshape(-1, 1))).astype(np.float32) shap_results.append(batch_shap_results) shap_raw.append(shap_data[result[1]][1].drop(clf_name, axis=1)) if verbose: - print(f"Completed SHAP data (Batch {result[1] + 1}/{len(shap_data)}).") + print(f"Completed SHAP batch (Batch {result[1] + 1}/{len(shap_data)}).") pool.terminate(); pool.join() shap_df = pd.DataFrame(data=np.row_stack(shap_results), columns=list(x_names) + ["Expected_value", "Sum", "Prediction_probability", clf_name]) diff --git a/simba/model/grid_search_multiclass_rf.py b/simba/model/grid_search_multiclass_rf.py index f5e9f1377..9e10434ac 100644 --- a/simba/model/grid_search_multiclass_rf.py +++ b/simba/model/grid_search_multiclass_rf.py @@ -271,24 +271,22 @@ def run(self): if (meta_dict[MLParamKeys.SHAP_SCORES.value] in Options.PERFORM_FLAGS.value): if not shap_multiprocess in Options.PERFORM_FLAGS.value: - self.create_shap_log( - ini_file_path=self.config_path, - rf_clf=self.rf_clf, - x_df=self.x_train, - y_df=self.y_train, - x_names=self.feature_names, - clf_name=self.clf_name, - cnt_present=meta_dict[MLParamKeys.SHAP_PRESENT.value], - cnt_absent=meta_dict[MLParamKeys.SHAP_ABSENT.value], - save_path=self.model_dir_out, - save_it=save_n, - save_file_no=config_cnt, - ) + self.create_shap_log(rf_clf=self.rf_clf, + x=self.x_train, + y=self.y_train, + x_names=list(self.feature_names), + clf_name=self.clf_name, + cnt_present=meta_dict[MLParamKeys.SHAP_PRESENT.value], + cnt_absent=meta_dict[MLParamKeys.SHAP_ABSENT.value], + verbose=True, + plot=shap_plot, + save_it=save_n, + save_dir=self.model_dir_out) else: self.create_shap_log_mp(rf_clf=self.rf_clf, x=self.x_train, y=self.y_train, - x_names=self.feature_names, + x_names=list(self.feature_names), clf_name=self.clf_name, cnt_present=meta_dict[MLParamKeys.SHAP_PRESENT.value], cnt_absent=meta_dict[MLParamKeys.SHAP_ABSENT.value], diff --git a/simba/model/grid_search_rf.py b/simba/model/grid_search_rf.py index 8d17cb9f2..abd8f01cb 100644 --- a/simba/model/grid_search_rf.py +++ b/simba/model/grid_search_rf.py @@ -125,22 +125,22 @@ def run(self): shap_multiprocess = meta_dict[MLParamKeys.SHAP_MULTIPROCESS.value] if (meta_dict[MLParamKeys.SHAP_SCORES.value] in Options.PERFORM_FLAGS.value): if not shap_multiprocess in Options.PERFORM_FLAGS.value: - self.create_shap_log(ini_file_path=self.config_path, - rf_clf=self.rf_clf, - x_df=self.x_train, - y_df=self.y_train, - x_names=self.feature_names, + self.create_shap_log(rf_clf=self.rf_clf, + x=self.x_train, + y=self.y_train, + x_names=list(self.feature_names), clf_name=self.clf_name, cnt_present=meta_dict[MLParamKeys.SHAP_PRESENT.value], cnt_absent=meta_dict[MLParamKeys.SHAP_ABSENT.value], - save_path=self.model_dir_out, + verbose=True, + plot=shap_plot, save_it=save_n, - save_file_no=config_cnt) + save_dir=self.model_dir_out) else: self.create_shap_log_mp(rf_clf=self.rf_clf, x=self.x_train, y=self.y_train, - x_names=self.feature_names, + x_names=list(self.feature_names), clf_name=self.clf_name, cnt_present=meta_dict[MLParamKeys.SHAP_PRESENT.value], cnt_absent=meta_dict[MLParamKeys.SHAP_ABSENT.value], @@ -159,8 +159,8 @@ def run(self): # -# test = GridSearchRandomForestClassifier(config_path=r"C:\troubleshooting\mitra\project_folder\project_config.ini") -# test.run() +test = GridSearchRandomForestClassifier(config_path=r"C:\troubleshooting\mitra\project_folder\project_config.ini") +test.run() # # test = GridSearchRandomForestClassifier(config_path=r"C:\troubleshooting\mitra\project_folder\project_config.ini") diff --git a/simba/model/train_multiclass_rf.py b/simba/model/train_multiclass_rf.py index 55df5edbb..43c2f4a54 100644 --- a/simba/model/train_multiclass_rf.py +++ b/simba/model/train_multiclass_rf.py @@ -246,23 +246,23 @@ def run(self): if not self.shap_multiprocess in Options.PERFORM_FLAGS.value: - self.create_shap_log( - ini_file_path=self.config_path, - rf_clf=self.rf_clf, - x_df=self.x_train, - y_df=self.y_train, - x_names=self.feature_names, - clf_name=self.clf_name, - cnt_present=self.shap_target_present_cnt, - cnt_absent=self.shap_target_absent_cnt, - save_it=self.shap_save_n, - save_path=self.eval_out_path, - ) + self.create_shap_log(rf_clf=self.rf_clf, + x=self.x_train, + y=self.y_train, + x_names=list(self.feature_names), + clf_name=self.clf_name, + cnt_present=self.shap_target_present_cnt, + cnt_absent=self.shap_target_absent_cnt, + verbose=True, + plot=shap_plot, + save_it=self.shap_save_n, + save_dir=self.eval_out_path) + else: self.create_shap_log_mp(rf_clf=self.rf_clf, x=self.x_train, y=self.y_train, - x_names=self.feature_names, + x_names=list(self.feature_names), clf_name=self.clf_name, cnt_present=self.shap_target_present_cnt, cnt_absent=self.shap_target_absent_cnt, diff --git a/simba/model/train_rf.py b/simba/model/train_rf.py index 7b078f62f..b0dd92a71 100644 --- a/simba/model/train_rf.py +++ b/simba/model/train_rf.py @@ -53,7 +53,7 @@ def __init__(self, self.feature_names = self.x_df.columns self.check_sampled_dataset_integrity(x_df=self.x_df, y_df=self.y_df) print(f"Number of features in dataset: {len(self.x_df.columns)}") - print(f"Number of {self.clf_name} frames in dataset: {self.y_df.sum()} ({str(round(self.y_df.sum() / len(self.y_df), 4) * 100)}%)") + print(f"Number of {self.clf_name} frames in dataset: {int(self.y_df.sum())} ({str(round(self.y_df.sum() / len(self.y_df), 4) * 100)}%)") def perform_sampling(self): """ @@ -283,23 +283,22 @@ def run(self): if generate_shap_scores in Options.PERFORM_FLAGS.value: shap_plot = self.bp_config in {'14', '16'} if not shap_multiprocess in Options.PERFORM_FLAGS.value: - self.create_shap_log( - ini_file_path=self.config_path, - rf_clf=self.rf_clf, - x_df=self.x_train, - y_df=self.y_train, - x_names=self.feature_names, - clf_name=self.clf_name, - cnt_present=shap_target_present_cnt, - cnt_absent=shap_target_absent_cnt, - save_it=shap_save_n, - save_path=self.eval_out_path, - ) + self.create_shap_log(rf_clf=self.rf_clf, + x=self.x_train, + y=self.y_train, + x_names=list(self.feature_names), + clf_name=self.clf_name, + cnt_present=shap_target_present_cnt, + cnt_absent=shap_target_absent_cnt, + verbose=True, + plot=shap_plot, + save_it=shap_save_n, + save_dir=self.eval_out_path) else: self.create_shap_log_mp(rf_clf=self.rf_clf, x=self.x_train, y=self.y_train, - x_names=self.feature_names, + x_names=list(self.feature_names), clf_name=self.clf_name, cnt_present=shap_target_present_cnt, cnt_absent=shap_target_absent_cnt, @@ -356,11 +355,10 @@ def save(self) -> None: if not os.listdir(self.model_dir_out): os.makedirs(self.model_dir_out) self.save_rf_model(self.rf_clf, self.clf_name, self.model_dir_out) - stdout_success(msg=f"Classifier {self.clf_name} saved in models/generated_models directory", elapsed_time=self.timer.elapsed_time_str, source=self.__class__.__name__) - stdout_success(msg=f"Evaluation files are in models/generated_models/model_evaluations folders", source=self.__class__.__name__) + stdout_success(msg=f"Classifier {self.clf_name} saved in {self.model_dir_out} directory", elapsed_time=self.timer.elapsed_time_str, source=self.__class__.__name__) + stdout_success(msg=f"Evaluation files are in {self.eval_out_path} folders", source=self.__class__.__name__) -# # test = TrainRandomForestClassifier(config_path=r"C:\troubleshooting\mitra\project_folder\project_config.ini") # test.run() # test.save() diff --git a/simba/sandbox/labelling_interface_25.py b/simba/sandbox/labelling_interface_25.py new file mode 100644 index 000000000..884baed9d --- /dev/null +++ b/simba/sandbox/labelling_interface_25.py @@ -0,0 +1,390 @@ +__author__ = "Simon Nilsson" + +import os +from subprocess import PIPE, Popen +from tkinter import * +from tkinter import filedialog +from typing import Dict, Optional, Union + +import cv2 +import pandas as pd +from PIL import Image, ImageTk +from tabulate import tabulate + +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +import simba +from simba.mixins.config_reader import ConfigReader +from simba.ui.tkinter_functions import Entry_Box +from simba.utils.checks import (check_file_exist_and_readable, check_float, check_int, check_str, check_that_column_exist, check_valid_boolean, check_valid_dataframe, check_valid_dict) +from simba.utils.enums import Options, TagNames +from simba.utils.errors import FrameRangeError, NoDataError, NoFilesFoundError +from simba.utils.lookups import (get_labelling_img_kbd_bindings, get_labelling_video_kbd_bindings) +from simba.utils.printing import log_event, stdout_success +from simba.utils.read_write import (get_all_clf_names, get_fn_ext, get_video_meta_data, read_config_entry, read_df, read_frm_of_video, write_df) +from simba.utils.warnings import FrameRangeWarning + +PLAY_VIDEO_SCRIPT_PATH = os.path.join(os.path.dirname(simba.__file__), "labelling/play_annotation_video.py") +PADDING = 5 + +class LabellingInterface(ConfigReader): + """ + Launch ``standard`` or ``pseudo``-labelling (annotation) GUI interface in SimBA. + + .. note:: + Tutorial `__. + + .. image:: _static/img/annotator.png + :width: 500 + :align: center + + + :param Union[str, os.PathLike] config_path: path to SimBA project config file in Configparser format + :param Union[str, os.PathLike] video_path: Path to video that is to be annotated. + :param Literal["from_scratch", "pseudo"] setting: String representing annotation method. OPTIONS: ``from_scratch`` or ``pseudo`` + :param Optional[Dict[str, float]] thresholds: If setting ``pseudo``, threshold_dict dict contains the machine probability thresholds, with the classifier names as keys and the classification probabilities as values, e.g. {'Attack': 0.40, 'Sniffing': 0.7). + :param bool continuing: If True, continouing previously started annotation session. + + :example: + >>> select_labelling_video(config_path='MyConfigPath', threshold_dict={'Attack': 0.4}, file_path='MyVideoFilePath', setting='pseudo', continuing=False) + """ + + def __init__(self, + config_path: Union[str, os.PathLike], + video_path: Union[str, os.PathLike], + thresholds: Optional[Dict[str, float]] = None, + setting: Literal["from_scratch", "pseudo"] = "pseudo", + continuing: Optional[bool] = False): + + ConfigReader.__init__(self, config_path=config_path) + if len(self.clf_names) == 0: + raise NoDataError(msg='To annotate behaviors, your SimBA project needs at least one defined classifier. Found 0 classifiers defined in SimBA project', source=self.__class__.__name__) + log_event(logger_name=str(self.__class__.__name__), log_type=TagNames.CLASS_INIT.value, msg=self.create_log_msg_from_init_args(locals=locals())) + self.video_meta_data = get_video_meta_data(video_path=video_path) + check_str(name='setting', value=setting, options=('pseudo', "from_scratch")) + check_valid_boolean(value=[continuing], source=select_labelling_video.__name__) + if thresholds is not None: + check_valid_dict(x=thresholds, valid_key_dtypes=(str,), valid_values_dtypes=(float,), min_value=0, max_value=1.0) + self.frm_no, self.thresholds, self.file_path, self.setting, self.video_path = 0, thresholds, video_path, setting, video_path + _, self.video_name, _ = get_fn_ext(filepath=video_path) + self.features_extracted_file_path = os.path.join(self.features_dir, f"{self.video_name}.{self.file_type}") + self.targets_inserted_file_path = os.path.join(self.targets_folder, f"{self.video_name}.{self.file_type}") + self.machine_results_file_path = os.path.join(self.machine_results_dir, f"{self.video_name}.{self.file_type}") + self.cap = cv2.VideoCapture(self.video_path) + self.img_kbd_bindings = get_labelling_img_kbd_bindings() + self.video_kbd_bindings = get_labelling_video_kbd_bindings() + self.__create_frm_key_presses_lbl() + self.__create_video_key_presses_lbl() + self.frame_lst = list(range(0, self.video_meta_data["frame_count"])) + self.max_frm_no = max(self.frame_lst) + self.max_frm_size = 1080, 650 + self.main_window = Toplevel() + if continuing: + if not os.path.isfile(self.targets_inserted_file_path): + raise NoFilesFoundError(msg=f'When continuing annotations, SimBA expects a file at {self.targets_inserted_file_path}. SimBA could not find this file.', source=self.__class__.__name__) + if not os.path.isfile(self.features_extracted_file_path): + raise NoFilesFoundError(msg=f'When continuing annotations, SimBA expects a file at {self.features_extracted_file_path}. SimBA could not find this file.', source=self.__class__.__name__) + self.data_df = read_df(self.targets_inserted_file_path, self.file_type) + self.data_df_features = read_df(self.features_extracted_file_path, self.file_type) + missing_idx = self.data_df_features.index.difference(self.data_df.index) + if len(missing_idx) > 0: + self.data_df_features = self.data_df_features.iloc[self.data_df_features.index.difference(self.data_df.index)] + self.data_df = pd.concat([self.data_df.astype(int), self.data_df_features], axis=0).sort_index() + self.main_window.title("SIMBA ANNOTATION INTERFACE (CONTINUING ANNOTATIONS) - {}".format( self.video_name)) + self.frm_no = read_config_entry(self.config, "Last saved frames", self.video_name, data_type="int", default_value=0) + if self.frm_no not in self.frame_lst: + FrameRangeWarning(msg=f'SimBA attempted to open the last saved frame of video {self.video_name} as denoted in the section [Last saved frames] in the project_config.ini. However, this frame does not exist in the video. The video {self.video_name} has {self.max_frm_no} frames. SimBA will begin with the first frame instead.') + self.frm_no = 0 + + else: + if setting == "from_scratch": + check_file_exist_and_readable(file_path=self.features_extracted_file_path) + self.data_df = read_df(self.features_extracted_file_path, self.file_type) + self.main_window.title("SIMBA ANNOTATION INTERFACE (ANNOTATING FROM SCRATCH) - {}".format(self.video_name)) + for target in self.clf_names: + self.data_df[target] = 0 + elif setting == "pseudo": + if not os.path.isfile(self.machine_results_file_path): + raise NoFilesFoundError(msg=f'When doing pseudo-annotations, SimBA expects a file at {self.machine_results_file_path}. SimBA could not find this file.', source=self.__class__.__name__) + self.data_df = read_df(self.machine_results_file_path, self.file_type) + check_valid_dataframe(df=self.data_df, source=self.__class__.__name__, required_fields=self.clf_names) + for target in self.clf_names: + self.data_df.loc[self.data_df[f"Probability_{target}"] > self.thresholds[target], target] = 1 + self.data_df.loc[self.data_df[f"Probability_{target}"] <= self.thresholds[target], target] = 0 + self.main_window.title("SIMBA ANNOTATION INTERFACE (PSEUDO-LABELLING) - {}".format(self.video_name)) + + self.data_df_targets = self.data_df + for target in self.clf_names: + check_that_column_exist(df=self.data_df_targets, column_name=target, file_name=video_path) + self.data_df_targets = self.data_df_targets[self.clf_names] + self.folder = Frame(self.main_window) + self.buttons_frm = Frame(self.main_window, bd=2, width=700, height=300) + self.current_frm_n = IntVar(self.main_window, value=self.frm_no) + self.change_frm_box = Entry(self.buttons_frm, width=7, textvariable=self.current_frm_n) + self.frame_number_lbl = Label(self.buttons_frm, text="Frame number") + self.forward_btn = Button(self.buttons_frm, text=">", command=lambda: self.__advance_frame(new_frm_number=int(self.current_frm_n.get() + 1))) + self.backward_btn = Button(self.buttons_frm, text="<", command=lambda: self.__advance_frame(new_frm_number=int(self.current_frm_n.get() - 1))) + self.forward_max_btn = Button(self.buttons_frm, text=">>", command=lambda: self.__advance_frame(len(self.frame_lst) - 1)) + self.backward_max_btn = Button(self.buttons_frm, text="<<", command=lambda: self.__advance_frame(0)) + self.select_frm_btn = Button(self.buttons_frm, text="Jump to selected frame", command=lambda: self.__advance_frame(new_frm_number=int(self.change_frm_box.get()))) + self.jump_frame = Frame(self.main_window) + self.jump = Label(self.jump_frame, text="Jump Size:") + self.jump_size = Scale(self.jump_frame, from_=0, to=100, orient=HORIZONTAL, length=200) + self.jump_size.set(0) + self.jump_back = Button(self.jump_frame, text="<<", command=lambda: self.__advance_frame(int(self.change_frm_box.get()) - self.jump_size.get())) + self.jump_forward = Button(self.jump_frame, text=">>", command=lambda: self.__advance_frame(int(self.change_frm_box.get()) + self.jump_size.get())) + + self.folder.grid(row=0, column=1, sticky=N) + self.buttons_frm.grid(row=1, column=0) + self.change_frm_box.grid(row=0, column=1) + self.forward_btn.grid(row=1, column=3, sticky=E, padx=PADDING) + self.backward_btn.grid(row=1, column=1, sticky=W, padx=PADDING) + self.change_frm_box.grid(row=1, column=1) + self.forward_max_btn.grid(row=1, column=4, sticky=W, padx=PADDING) + self.backward_max_btn.grid(row=1, column=0, sticky=W, padx=PADDING) + self.select_frm_btn.grid(row=2, column=1, sticky=N) + self.jump_frame.grid(row=2, column=0) + self.jump.grid(row=0, column=0, sticky=W) + self.jump_size.grid(row=0, column=1, sticky=W) + self.jump_back.grid(row=0, column=2, sticky=E) + self.jump_forward.grid(row=0, column=3, sticky=W) + + self.check_frame = Frame(self.main_window, bd=2, width=300, height=500) + self.check_frame.grid(row=0, column=1) + self.check_behavior_lbl = Label(self.check_frame, text="Check Behavior:") + self.check_behavior_lbl.config(font=("Calibri", 16)) + self.check_behavior_lbl.grid(sticky=N) + + self.checkboxes = {} + for target_cnt, target in enumerate(self.clf_names): + self.checkboxes[target] = {} + self.checkboxes[target]["name"] = target + if self.current_frm_n.get() not in list(self.data_df_targets.index): + raise FrameRangeError(msg=f'Frame pose-estimation data for frame {self.current_frm_n.get()} could not be found for video {self.video_name}. This suggests that the video ({self.video_path}) has a different frame number count than the rows in the data files (e.g., {self.targets_inserted_file_path}, {self.features_extracted_file_path}, {self.machine_results_file_path}, where they exist). Alternatively, modify the [Last saved frames] section in the {self.config_path} if needed.', source=self.__class__.__name__) + self.checkboxes[target]["var"] = IntVar(value=self.data_df_targets[target].iloc[self.current_frm_n.get()]) + self.checkboxes[target]["cb"] = Checkbutton(self.check_frame, + text=target, + variable=self.checkboxes[target]["var"], + command=lambda k=self.checkboxes[target][ + "name" + ]: self.save_behavior_in_frm( + frame_number=int(self.current_frm_n.get()), target=k + ), + ) + self.checkboxes[target]["cb"].grid(row=target_cnt + 1, sticky=W) + + self.range_on = IntVar(value=0) + self.range_frames = Frame(self.main_window) + self.range_frames.grid(row=1, column=1, sticky=S) + self.select_range = Checkbutton(self.range_frames, text="Frame range", variable=self.range_on) + self.select_range.grid(row=0, column=0, sticky=W) + self.first_frame = Entry(self.range_frames, width=7) + self.first_frame.grid(row=0, column=1, sticky=E) + self.to_label = Label(self.range_frames, text=" to ") + self.to_label.grid(row=0, column=2, sticky=E) + self.last_frame = Entry(self.range_frames, width=7) + self.last_frame.grid(row=0, column=3, sticky=E) + + save = Button(self.main_window, text="Save Range", command=lambda: self.__save_behavior_in_range(self.first_frame.get(), self.last_frame.get())) + save.grid(row=2, column=1, sticky=N) + + self.generate = Button(self.main_window, text="Save Annotations", command=lambda: self.__save_results(), fg="blue") + self.generate.config(font=("Calibri", 16)) + self.generate.grid(row=10, column=1, sticky=N) + + self.video_player_frm = Frame(self.main_window, width=100, height=100) + self.video_player_frm.grid(row=0, column=2, sticky=N) + self.play_video_btn = Button(self.video_player_frm, text="Open Video", command=self.__play_video) + self.play_video_btn.grid(sticky=N, pady=10) + Label(self.video_player_frm, text=self.video_presses_lbl).grid(sticky=W) + self.update_img_from_video = Button(self.video_player_frm, text="Show current video frame", command=self.__update_frame_from_video) + self.update_img_from_video.grid(sticky=N) + self.__bind_frm_shortcut_keys() + + + Label(self.video_player_frm, text=self.key_presses_lbl).grid(sticky=S) + self.__advance_frame(new_frm_number=self.frm_no) + self.main_window.mainloop() + + def __create_frm_key_presses_lbl(self): + self.key_presses_lbl = "\n\n Keyboard shortcuts for frame navigation: " + for k, v in self.img_kbd_bindings.items(): + self.key_presses_lbl += '\n' + self.key_presses_lbl += v['label'] + + def __create_video_key_presses_lbl(self): + self.video_presses_lbl = "\n\n Keyboard shortcuts for video navigation: " + for k, v in self.video_kbd_bindings.items(): + self.video_presses_lbl += '\n' + self.video_presses_lbl += v['label'] + + + def __bind_frm_shortcut_keys(self): + self.main_window.bind(self.img_kbd_bindings['save']['kbd'], lambda x: self.__save_results()) + self.main_window.bind(self.img_kbd_bindings['frame+1_keep_choices']['kbd'], lambda x: self.__advance_frame(new_frm_number=int(self.current_frm_n.get() + 1), save_and_keep_checks=True)) + self.main_window.bind(self.img_kbd_bindings['print_annotation_statistic']['kbd'], lambda x: self.print_annotation_statistics()) + self.main_window.bind(self.img_kbd_bindings['frame+1']['kbd'], lambda x: self.__advance_frame(new_frm_number=int(self.current_frm_n.get() + 1))) + self.main_window.bind(self.img_kbd_bindings['frame-1']['kbd'], lambda x: self.__advance_frame(new_frm_number=int(self.current_frm_n.get() - 1))) + self.main_window.bind(self.img_kbd_bindings['last_frame']['kbd'], lambda x: self.__advance_frame(new_frm_number=self.max_frm_no)) + self.main_window.bind(self.img_kbd_bindings['first_frame']['kbd'], lambda x: self.__advance_frame(0)) + + + + + def print_annotation_statistics(self): + table_view = [["Video name", self.video_name], ["Video frames", self.video_meta_data["frame_count"]]] + for target in self.clf_names: + present = len(self.data_df_targets[self.data_df_targets[target] == 1]) + absent = len(self.data_df_targets[self.data_df_targets[target] == 0]) + table_view.append([target + " present labels", present]) + table_view.append([target + " absent labels", absent]) + table_view.append([target + " % present", present / self.video_meta_data["frame_count"]]) + table_view.append([target + " % absent", absent / self.video_meta_data["frame_count"]]) + headers = ["VARIABLE", "VALUE"] + print(tabulate(table_view, headers, tablefmt="github")) + + def __play_video(self): + p = Popen(f"python {PLAY_VIDEO_SCRIPT_PATH}",stdin=PIPE, stdout=PIPE, shell=True,) + main_project_dir = os.path.dirname(self.config_path) + p.stdin.write(bytes(self.video_path, "utf-8")) + p.stdin.close() + temp_file = os.path.join(main_project_dir, "subprocess.txt") + with open(temp_file, "w") as text_file: + text_file.write(str(p.pid)) + + def __update_frame_from_video(self): + f = open(os.path.join(os.path.dirname(self.config_path), "labelling_info.txt"), "r+") + os.fsync(f.fileno()) + vid_frame_no = int(f.readline()) + self.__advance_frame(new_frm_number=vid_frame_no) + f.close() + + def __read_frm(self, frm_number: int): + check_int(name=f'{self.video_name} {frm_number}', value=frm_number, min_value=0) + self.current_frm_npy = read_frm_of_video(video_path=self.cap, frame_index=frm_number) + self.current_frm_npy = cv2.cvtColor(self.current_frm_npy, cv2.COLOR_RGB2BGR) + self.current_frm_pil = Image.fromarray(self.current_frm_npy) + self.current_frm_pil.thumbnail(self.max_frm_size, Image.LANCZOS) + self.current_frm_pil = ImageTk.PhotoImage(master=self.main_window, image=self.current_frm_pil) + self.video_frame = Label(self.main_window, image=self.current_frm_pil) + self.video_frame.image = self.current_frm_pil + self.video_frame.grid(row=0, column=0) + + def __advance_frame(self, new_frm_number: int, save_and_keep_checks=False): + if new_frm_number > self.max_frm_no: + print(f"FRAME {new_frm_number} CANNOT BE SHOWN - YOU ARE VIEWING THE FINAL FRAME OF THE VIDEO (FRAME NUMBER {self.max_frm_no})") + self.current_frm_n = IntVar(value=self.max_frm_no) + self.change_frm_box.delete(0, END) + self.change_frm_box.insert(0, str(self.current_frm_n.get())) + elif new_frm_number < 0: + print(f"FRAME {new_frm_number} CANNOT BE SHOWN - YOU ARE VIEWING THE FIRST FRAME OF THE VIDEO (FRAME NUMBER 0)") + self.current_frm_n = IntVar(value=0) + self.change_frm_box.delete(0, END) + self.change_frm_box.insert(0, str(self.current_frm_n.get())) + else: + self.__create_print_statements() + self.current_frm_n = IntVar(value=new_frm_number) + self.change_frm_box.delete(0, END) + self.change_frm_box.insert(0, str(self.current_frm_n.get())) + if not save_and_keep_checks: + for target in self.clf_names: + self.checkboxes[target]["var"].set(bool(self.data_df_targets[target].loc[int(self.current_frm_n.get())])) + else: + for target in self.clf_names: + self.checkboxes[target]["var"].set( + self.data_df_targets[target].loc[int(self.current_frm_n.get() - 1)]) + self.save_behavior_in_frm(target=target) + self.__read_frm(frm_number=int(self.current_frm_n.get())) + + def __save_behavior_in_range(self, start_frm=None, end_frm=None): + if not self.range_on.get(): + raise FrameRangeError("SAVE RANGE ERROR: TO SAVE RANGE OF FRAMES, TICK THE `Frame range` checkbox before clicking `Save Range`", source=self.__class__.__name__) + else: + check_int("START FRAME", int(start_frm), max_value=self.max_frm_no, min_value=0) + check_int("END FRAME", int(end_frm), max_value=self.max_frm_no, min_value=0) + for frm_no in range(int(start_frm), int(end_frm) + 1): + for target in self.clf_names: + self.data_df_targets[target].loc[frm_no] = self.checkboxes[target]["var"].get() + self.__read_frm(frm_number=int(end_frm)) + self.change_frm_box.delete(0, END) + self.change_frm_box.insert(0, end_frm) + self.__create_print_statements(frame_range=True, start_frame=start_frm, end_frame=end_frm) + + def save_behavior_in_frm(self, frame_number=None, target=None): + self.data_df_targets[target].loc[int(self.current_frm_n.get())] = int(self.checkboxes[target]["var"].get()) + + def __save_results(self): + self.save_df = read_df(self.features_extracted_file_path, self.file_type) + self.save_df = pd.concat([self.save_df, self.data_df_targets], axis=1) + try: + write_df(self.save_df, self.file_type, self.targets_inserted_file_path) + except Exception as e: + print(e, f"SIMBA ERROR: File for video {get_fn_ext(self.features_extracted_file_path)[1]} could not be saved.") + raise FileExistsError + stdout_success(msg=f"SAVED: Annotation file for video {self.video_name} saved within the project_folder/csv/targets_inserted directory.", source=self.__class__.__name__) + if not self.config.has_section("Last saved frames"): + self.config.add_section("Last saved frames") + self.config.set("Last saved frames", str(self.video_name), str(self.current_frm_n.get())) + with open(self.config_path, "w") as configfile: + self.config.write(configfile) + + def __create_print_statements(self, frame_range: bool = None, start_frame: int = None, end_frame: int = None): + print("USER FRAME SELECTION(S):") + if not frame_range: + for target in self.clf_names: + target_present_choice = self.checkboxes[target]["var"].get() + if target_present_choice == 0: + print("{} ABSENT IN FRAME {}".format(target, self.current_frm_n.get())) + if target_present_choice == 1: + print("{} PRESENT IN FRAME {}".format(target, self.current_frm_n.get())) + + if frame_range: + for target in self.clf_names: + target_present_choice = self.checkboxes[target]["var"].get() + if target_present_choice == 1: + print("{} PRESENT IN FRAMES {} to {}".format(target, str(start_frame), str(end_frame))) + elif target_present_choice == 0: + print("{} ABSENT IN FRAMES {} to {}".format(target, str(start_frame), str(end_frame))) + + +def select_labelling_video(config_path: Union[str, os.PathLike], + threshold_dict: Optional[Dict[str, Entry_Box]] = None, + setting: Literal['pseudo', 'from_scratch'] = 'from_scratch', + continuing: bool = None, + video_file_path: Union[str, os.PathLike] = None): + + check_file_exist_and_readable(file_path=config_path) + if threshold_dict is not None: + check_valid_dict(x=threshold_dict, valid_key_dtypes=(str,), valid_values_dtypes=(float,)) + check_str(name='setting', value=setting, options=('pseudo', "from_scratch")) + check_valid_boolean(value=[continuing], source=select_labelling_video.__name__) + if setting is not "pseudo": + video_file_path = filedialog.askopenfilename(filetypes=[("Video files", Options.ALL_VIDEO_FORMAT_STR_OPTIONS.value)]) + else: + threshold_dict_values = {} + for k, v in threshold_dict.items(): + check_float(name=k, value=float(v.entry_get), min_value=0.0, max_value=1.0) + threshold_dict_values[k] = float(v.entry_get) + threshold_dict = threshold_dict_values + + check_file_exist_and_readable(file_path=video_file_path) + video_meta = get_video_meta_data(video_file_path) + _, video_name, _ = get_fn_ext(video_file_path) + + + + print(f"ANNOTATING VIDEO {video_name} \n VIDEO INFO: {video_meta}") + _ = LabellingInterface(config_path=config_path, + video_path=video_file_path, + thresholds=threshold_dict, + setting=setting, + continuing=continuing) + +# +# test = select_labelling_video(config_path=r"C:\troubleshooting\mitra\project_folder\project_config.ini", +# threshold_dict={'Attack': 0.4}, +# setting='from_scratch', +# continuing=True) diff --git a/simba/utils/checks.py b/simba/utils/checks.py index 5ca2705f1..01a069d10 100644 --- a/simba/utils/checks.py +++ b/simba/utils/checks.py @@ -1419,7 +1419,9 @@ def check_valid_dict(x: dict, valid_values_dtypes: Optional[Tuple[Any]] = None, max_len_keys: Optional[int] = None, min_len_keys: Optional[int] = None, - required_keys: Optional[Tuple[Any, ...]] = None): + required_keys: Optional[Tuple[Any, ...]] = None, + max_value: Optional[Union[float, int]] = None, + min_value: Optional[Union[float, int]] = None): check_instance(source=check_valid_dict.__name__, instance=x, accepted_types=(dict,)) @@ -1445,7 +1447,20 @@ def check_valid_dict(x: dict, for i in list(required_keys): if i not in list(x.keys()): raise InvalidInputError(msg=f'The required key {i} does not exist in the dictionary. Existing keys: {list(x.keys())}', source=check_valid_dict.__name__) - + if max_value is not None: + if not isinstance(max_value, (float, int)): + raise InvalidInputError(msg=f'{check_valid_dict.__name__} max_value has to be a float or integer, got {type(max_value)}.') + for k, v in x.items(): + if isinstance(v, (float, int)): + if v > max_value: + raise InvalidInputError(msg=f'The required key {k} has value {v} which is above the max allowed: {max_value}.', source=check_valid_dict.__name__) + if min_value is not None: + if not isinstance(min_value, (float, int)): + raise InvalidInputError(msg=f'{check_valid_dict.__name__} max_value has to be a float or integer, got {type(min_value)}.') + for k, v in x.items(): + if isinstance(v, (float, int)): + if v < min_value: + raise InvalidInputError(msg=f'The required key {k} has value {v} which is less than the minimum allowed: {min_value}.', source=check_valid_dict.__name__) def is_video_color(video: Union[str, os.PathLike, cv2.VideoCapture]) -> bool: """