-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_evaluate_generate_llama.py
executable file
·114 lines (93 loc) · 3.47 KB
/
run_evaluate_generate_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
import json
import os
import sys
import time
from pathlib import Path
from typing import Tuple
import fire
import torch
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from tqdm import tqdm
from llama import LLaMA, ModelArgs, Tokenizer, Transformer
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
model.half()
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(
data_path: str,
output_path: str,
ckpt_dir: str,
tokenizer_path: str,
temperature: float = 0.8,
top_p: float = 0.95,
max_seq_len: int = 1024,
max_gen_len: int = 8,
max_batch_size: int = 32,
):
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
)
with open(data_path) as f:
data = json.load(f)
output = []
for start_idx in tqdm(range(0, len(data), max_batch_size)):
end_idx = min(start_idx + max_batch_size, len(data))
batch = data[start_idx:end_idx]
prompts = [example["prompt"] for example in batch]
completions = generator.generate(
prompts, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
)
completions = [
completion[len(prompt) :]
for prompt, completion in zip(prompts, completions)
]
for example, completion in zip(batch, completions):
example_correct = example["ground_truth"].lower() in completion.lower()
output.append({"prediction": completion, "correct": example_correct})
with open(output_path, "w") as f:
json.dump(output, f, indent=2)
acc = len(list(filter(lambda x: x["correct"], output))) / len(output)
print(f"Accuracy: {acc:.4f}. More detailed information are in the {output_path}.")
if __name__ == "__main__":
fire.Fire(main)