diff --git a/.gitignore b/.gitignore
index afc7adc..4526876 100644
--- a/.gitignore
+++ b/.gitignore
@@ -2,8 +2,11 @@
__pycache__/
.ipynb_checkpoints/
.DS_Store
-.vscode
+.vscode/
+.pytest_cache/
*.zip
scripts/
+wiki/
+*.egg-info/
diff --git a/notebooks/hank.ipynb b/notebooks/hank.ipynb
index a52cc83..8871724 100644
--- a/notebooks/hank.ipynb
+++ b/notebooks/hank.ipynb
@@ -10,7 +10,6 @@
"2. [Solve for a steady state with multiple calibration targets](#2-calibration)\n",
"3. [Compute linearized impulse responses: unwrap convenience function](#3-linear)\n",
"4. [Compute nonlinear impulse responses: quasi-Newton performs well even for large nonlinearities](#4-nonlinear)\n",
- "5. [Check local determinacy](#5-determinacy)\n",
"\n",
"This notebook accompanies the working paper by Auclert, Bardóczy, Rognlie, Straub (2019): \"Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models\". Please see the [Github repository](https://github.com/shade-econ/sequence-jacobian) for more information and code.\n",
"\n",
@@ -89,8 +88,8 @@
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
- "import sequence_jacobian as sj\n",
- "from sequence_jacobian import simple, het"
+ "from sequence_jacobian import simple, het, create_model\n",
+ "from sequence_jacobian.models import hank"
]
},
{
@@ -133,7 +132,10 @@
"metadata": {},
"outputs": [],
"source": [
- "def transfers(pi_e, Div, Tax, e_grid, div_rule, tax_rule): \n",
+ "def transfers(pi_e, Div, Tax, e_grid):\n",
+ " # default incidence rules are proportional to skill\n",
+ " tax_rule, div_rule = e_grid, e_grid # scale does not matter, will be normalized anyway\n",
+ "\n",
" div = Div / np.sum(pi_e * div_rule) * div_rule\n",
" tax = Tax / np.sum(pi_e * tax_rule) * tax_rule\n",
" T = div - tax\n",
@@ -155,8 +157,8 @@
"metadata": {},
"outputs": [],
"source": [
- "sj.hank.household.add_hetinput(transfers, overwrite=True, verbose=False)\n",
- "household = sj.hank.household"
+ "household = hank.household\n",
+ "household.add_hetinput(transfers, overwrite=True, verbose=False)"
]
},
{
@@ -173,77 +175,26 @@
"\n",
"\n",
"## 2 Calibrating the steady state\n",
- "Similarly to the RBC example, we calibrate the discount factor $\\beta$ and disutility of labor $\\varphi$ to hit a target for the interest rate and effective labor $L=1.$\n",
- "\n",
- "This is a two-dimensional rootfinding problem that we solve by Broyden's method, which we implemented in ``utilities/solvers.py``. It takes a function $f: \\mathbb{R}^n \\to \\mathbb{R}^n$ and an initial guess for its roots, $x_0 \\in \\mathbb{R}^n$, and backtracks whenever $f$ returns a `ValueError`.\n",
- "\n",
- "The calibration has two substantive steps. First, express analytically all variables that don't depend on $(\\beta, \\varphi).$ Second, construct the residual function that takes the current guesses $(\\beta, \\varphi)$ and maps them into deviations from the calibration targets. This just requires an evaluation of the household block. The rootfinder does the rest. \n",
- "\n",
- "Although additional efficiency gains would be possible here (for instance, by updating our initial guesses for policy and distribution along the way), we will not implement them, since they are not our focus here."
+ "Similarly to the RBC example, we calibrate the discount factor $\\beta$ and disutility of labor $\\varphi$ to hit a target for the interest rate and effective labor $L=1.$ Additionally we calibrate the wage $w$ such that the Phillips curve relation is satisfied in steady state."
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
- "def hank_ss(beta_guess=0.986, vphi_guess=0.8, r=0.005, eis=0.5, frisch=0.5, mu=1.2, B_Y=5.6, rho_s=0.966, sigma_s=0.5,\n",
- " kappa=0.1, phi=1.5, nS=7, amax=150, nA=500, tax_rule=None, div_rule=None):\n",
- " \"\"\"Solve steady state of full GE model. Calibrate (beta, vphi) to hit target for interest rate and Y.\"\"\"\n",
- "\n",
- " # set up grid\n",
- " a_grid = sj.utilities.discretize.agrid(amax=amax, n=nA)\n",
- " e_grid, pi_e, Pi = sj.utilities.discretize.markov_rouwenhorst(rho=rho_s, sigma=sigma_s, N=nS)\n",
- " \n",
- " # default incidence rules are proportional to skill\n",
- " if tax_rule is None:\n",
- " tax_rule = e_grid # scale does not matter, will be normalized anyway\n",
- " if div_rule is None:\n",
- " div_rule = e_grid\n",
- " assert len(tax_rule) == len(div_rule) == len(e_grid), 'Incidence rules are inconsistent with income grid.'\n",
- "\n",
- " # solve analytically what we can\n",
- " B = B_Y\n",
- " w = 1 / mu\n",
- " Div = (1 - w)\n",
- " Tax = r * B\n",
- " T = transfers(pi_e, Div, Tax, e_grid, div_rule, tax_rule)\n",
- "\n",
- " # initialize guess for policy function iteration\n",
- " fininc = (1 + r) * a_grid + T[:, np.newaxis] - a_grid[0]\n",
- " coh = (1 + r) * a_grid[np.newaxis, :] + w * e_grid[:, np.newaxis] + T[:, np.newaxis]\n",
- " Va = (1 + r) * (0.1 * coh) ** (-1 / eis)\n",
- "\n",
- " # residual function\n",
- " def res(x):\n",
- " beta_loc, vphi_loc = x\n",
- " # precompute constrained c and n which don't depend on Va\n",
- " c_const_loc, n_const_loc = sj.hank.solve_cn(w * e_grid[:, np.newaxis], fininc, eis, frisch, vphi_loc, Va)\n",
- " if beta_loc > 0.999 / (1 + r) or vphi_loc < 0.001:\n",
- " raise ValueError('Clearly invalid inputs')\n",
- " out = household.ss(Va=Va, Pi=Pi, a_grid=a_grid, e_grid=e_grid, pi_e=pi_e, w=w, r=r, beta=beta_loc, eis=eis,\n",
- " Div=Div, Tax=Tax, frisch=frisch, vphi=vphi_loc, c_const=c_const_loc, n_const=n_const_loc,\n",
- " tax_rule=tax_rule, div_rule=div_rule, ssflag=True)\n",
- " return np.array([out['A'] - B, out['N_e'] - 1])\n",
+ "blocks = [household, hank.firm, hank.monetary, hank.fiscal, hank.mkt_clearing, hank.nkpc,\n",
+ " hank.income_state_vars, hank.asset_state_vars]\n",
+ "hank_model = create_model(blocks, name=\"One Asset HANK\")\n",
"\n",
- " # solve for beta, vphi\n",
- " (beta, vphi), _ = sj.utilities.solvers.broyden_solver(res, np.array([beta_guess, vphi_guess]), verbose=False)\n",
+ "calibration = {\"r\": 0.005, \"rstar\": 0.005, \"eis\": 0.5, \"frisch\": 0.5, \"B_Y\": 5.6, \"B\": 5.6, \"mu\": 1.2,\n",
+ " \"rho_s\": 0.966, \"sigma_s\": 0.5, \"kappa\": 0.1, \"phi\": 1.5, \"Y\": 1, \"Z\": 1, \"L\": 1,\n",
+ " \"pi\": 0, \"nS\": 7, \"amax\": 150, \"nA\": 500}\n",
+ "unknowns_ss = {\"beta\": 0.986, \"vphi\": 0.8, \"w\": 0.8}\n",
+ "targets_ss = {\"asset_mkt\": 0, \"labor_mkt\": 0, \"nkpc_res\": 0.}\n",
"\n",
- " # extra evaluation for reporting\n",
- " c_const, n_const = sj.hank.solve_cn(w * e_grid[:, np.newaxis], fininc, eis, frisch, vphi, Va)\n",
- " ss = household.ss(Va=Va, Pi=Pi, a_grid=a_grid, e_grid=e_grid, pi_e=pi_e, w=w, r=r, beta=beta, eis=eis,\n",
- " Div=Div, Tax=Tax, frisch=frisch, vphi=vphi, c_const=c_const, n_const=n_const,\n",
- " tax_rule=tax_rule, div_rule=div_rule, ssflag=True)\n",
- " \n",
- " # check Walras's law\n",
- " walras = 1 - ss['C']\n",
- " assert np.abs(walras) < 1E-8\n",
- " \n",
- " # add aggregate variables\n",
- " ss.update({'B': B, 'phi': phi, 'kappa': kappa, 'Y': 1, 'rstar': r, 'Z': 1, 'mu': mu, 'L': 1, 'pi': 0,\n",
- " 'walras': walras, 'ssflag': False})\n",
- " return ss"
+ "ss = hank_model.solve_steady_state(calibration, unknowns_ss, targets_ss, solver=\"hybr\")"
]
},
{
@@ -255,7 +206,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
@@ -272,8 +223,7 @@
}
],
"source": [
- "ss = hank_ss()\n",
- "plt.plot(ss['a_grid'], ss['n'].T)\n",
+ "plt.plot(ss['a_grid'], ss.internal[\"household\"]['n'].T)\n",
"plt.xlabel('Assets'), plt.ylabel('Labor supply')\n",
"plt.show()"
]
@@ -318,7 +268,8 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### 3.1 Define simple blocks"
+ "### 3.1 Cut to the chase\n",
+ "The recommended way to obtain the general equilibrium Jacobians is to use the `solve_jacobian` method for the `hank_model` object."
]
},
{
@@ -326,50 +277,6 @@
"execution_count": 6,
"metadata": {},
"outputs": [],
- "source": [
- "@simple\n",
- "def firm(Y, w, Z, pi, mu, kappa):\n",
- " L = Y / Z\n",
- " Div = Y - w * L - mu/(mu-1)/(2*kappa) * (1+pi).apply(np.log)**2 * Y\n",
- " return L, Div\n",
- "\n",
- "@simple\n",
- "def monetary(pi, rstar, phi):\n",
- " r = (1 + rstar(-1) + phi * pi(-1)) / (1 + pi) - 1\n",
- " return r\n",
- "\n",
- "@simple\n",
- "def fiscal(r, B):\n",
- " Tax = r * B\n",
- " return Tax\n",
- "\n",
- "@simple\n",
- "def mkt_clearing(A, N_e, C, L, Y, B, pi, mu, kappa):\n",
- " asset_mkt = A - B\n",
- " labor_mkt = N_e - L\n",
- " goods_mkt = Y - C - mu/(mu-1)/(2*kappa) * (1+pi).apply(np.log)**2 * Y\n",
- " return asset_mkt, labor_mkt, goods_mkt\n",
- "\n",
- "@simple\n",
- "def nkpc(pi, w, Z, Y, r, mu, kappa):\n",
- " nkpc_res = kappa * (w / Z - 1 / mu) + Y(+1) / Y *\\\n",
- " (1 + pi(+1)).apply(np.log) / (1 + r(+1)) - (1 + pi).apply(np.log)\n",
- " return nkpc_res"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### 3.2 Cut to the chase\n",
- "The surest way to obtain the general equilibrium Jacobians is to use the `get_G` convenience function. Notice the `save=True` option. This means that we're saving the HA Jacobians calculated along the way for later use."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
"source": [
"# setup\n",
"T = 300\n",
@@ -378,17 +285,16 @@
"targets = ['nkpc_res', 'asset_mkt', 'labor_mkt']\n",
"\n",
"# general equilibrium jacobians\n",
- "block_list = [firm, monetary, fiscal, nkpc, mkt_clearing, household] \n",
- "G = sj.get_G(block_list, exogenous, unknowns, targets, T, ss, save=True)"
+ "G = hank_model.solve_jacobian(ss, exogenous, unknowns, targets, T=T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### 3.3 Break down `get_G`\n",
+ "### 3.2 Break down `solve_jacobian`\n",
"\n",
- "Under the hood, the very powerful `jac.get_G` performs the following steps:\n",
+ "Under the hood, the `solve_jacobian` method performs the following steps:\n",
" - orders the blocks so that we move forward along the model's DAG\n",
" - computes the partial Jacobians $\\mathcal{J}^{o,i}$ from all blocks (if their Jacobian is not supplied already), only with respect to the inputs that actually change: unknowns, exogenous shocks, outputs of earlier blocks\n",
" - forward accumulates partial Jacobians $\\mathcal{J}^{o,i}$ to form total Jacobians $\\mathbf{J}^{o,i}$\n",
@@ -409,58 +315,61 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
- "curlyJs, required = sj.jacobian.curlyJ_sorted(block_list, unknowns+exogenous, ss, T)"
+ "import sequence_jacobian.jacobian.drivers as jacobian\n",
+ "from sequence_jacobian.jacobian.classes import JacobianDict\n",
+ "\n",
+ "curlyJs, required = jacobian.curlyJ_sorted(blocks, unknowns + exogenous, ss, T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "The first output `curlyJs` is a list of nested dictionaries. Each entry in the list contains all the necessary Jacobians for the corresponding block. Blocks are ordered according to the topological sort.\n",
+ "The first output `curlyJs` is a list of `JacobianDict` objects. Each `JacobianDict` contains all the necessary Jacobians for the corresponding block. Blocks are ordered according to the topological sort.\n",
"\n",
"For example, the first block is `monetary`, because it only takes an unknown $\\pi$ and an exogenous $r^*$ as inputs. Let's take a look. "
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "{'r': {'pi': SimpleSparse({(-1, 0): 1.500, (0, 0): -1.005}), 'rstar': SimpleSparse({(-1, 0): 1.000})}}\n"
+ "The JacobianDict for the monetary block is: \n"
]
}
],
"source": [
- "print(curlyJs[0])"
+ "print(f\"The JacobianDict for the monetary block is: {curlyJs[0]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Since this is a simple block, the Jacobians are represented as a instances of the `SimpleSparse` class. Note that `jac.curlyJ_sorted` correctly determined that it is not necessary to differentiate with respect to the Taylor rule parameter $\\phi$ (if we wanted to consider shocks to this parameter, we'd just have to include it among the exogenous inputs.)\n",
+ "Note that `curlyJ_sorted` correctly determined that it is not necessary to differentiate with respect to the Taylor rule parameter $\\phi$ (if we wanted to consider shocks to this parameter, we'd just have to include it among the exogenous inputs.)\n",
"\n",
"The second output `required` is a set of extra variables (not unknowns and exogenous) that we have to differentiate with respect to, because they are outputs of some blocks and inputs of others. "
]
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "{'r', 'Tax', 'Div', 'C', 'A', 'N_e', 'L'}\n"
+ "{'A', 'C', 'N_e', 'r', 'Div', 'L', 'Tax'}\n"
]
}
],
@@ -480,23 +389,12 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 10,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dict_keys(['nkpc_res', 'asset_mkt', 'labor_mkt'])\n",
- "dict_keys(['pi', 'Y', 'w'])\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "J_curlyH_U = sj.jacobian.forward_accumulate(curlyJs, unknowns, targets, required)\n",
- "J_curlyH_Z = sj.jacobian.forward_accumulate(curlyJs, exogenous, targets, required)\n",
- "print(J_curlyH_U.keys())\n",
- "print(J_curlyH_U['asset_mkt'].keys())"
+ "J_curlyH_U = jacobian.forward_accumulate(curlyJs, unknowns, targets, required)\n",
+ "J_curlyH_Z = jacobian.forward_accumulate(curlyJs, exogenous, targets, required)"
]
},
{
@@ -508,7 +406,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -521,8 +419,8 @@
}
],
"source": [
- "H_U = sj.jacobian.pack_jacobians(J_curlyH_U, unknowns, targets, T)\n",
- "H_Z = sj.jacobian.pack_jacobians(J_curlyH_Z, exogenous, targets, T)\n",
+ "H_U = J_curlyH_U[targets, unknowns].pack(T)\n",
+ "H_Z = J_curlyH_Z[targets, exogenous].pack(T)\n",
"print(H_U.shape)\n",
"print(H_Z.shape)"
]
@@ -537,20 +435,11 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 17,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "dict_keys(['pi', 'w', 'Y'])\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "G_U = sj.jacobian.unpack_jacobians(-np.linalg.solve(H_U, H_Z), exogenous, unknowns, T)\n",
- "print(G_U.keys())"
+ "G_U = JacobianDict.unpack(-np.linalg.solve(H_U, H_Z), unknowns, exogenous, T)"
]
},
{
@@ -562,27 +451,27 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
- "curlyJs = [G_U] + curlyJs\n",
- "outputs = set().union(*(curlyJ.keys() for curlyJ in curlyJs)) - set(targets)\n",
+ "curlyJs_aug = [G_U] + curlyJs\n",
+ "outputs = set().union(*(curlyJ.outputs for curlyJ in curlyJs_aug)) - set(targets)\n",
"\n",
- "G2 = sj.jacobian.forward_accumulate(curlyJs, exogenous, outputs, required | set(unknowns))"
+ "G2 = jacobian.forward_accumulate(curlyJs_aug, exogenous, outputs, required | set(unknowns))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "### 3.4 Results\n",
+ "### 3.3 Results\n",
"First let's check that we have correctly reconstructed the steps of `jac.get_G`."
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -600,12 +489,12 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUVfrA8e87k957SIWE3kGKgCgoWBYBsaCiYNffKvbe1lXXtYvsWta1K2JXwLoWpClFaQGpAUIgpPde5/z+uDc4Qkgjk0ky5/M882Rmbntn5uY99557zrmilELTNE1zHRZnB6Bpmqa1L534NU3TXIxO/JqmaS5GJ35N0zQXoxO/pmmai9GJX9M0zcXoxN9ORCRSRFaKSImIPCciD4vIe8exvm0iMrENQ9S0VhORK0TkZ7vXpSKS2E7bXi4i17TxOv/0eboanfiPg4jsF5HJzZz9OiAXCFBK3dHC7bwtIo/Zv6eUGqiUWt6S9Widy/EeHDiTUspPKbXP2XFoDdOJv/10B7arTtRjTgx6H+mkRMTN2TFoHZP+p24j9aeGIvKsiBSISIqI/MWc9jZwOXC3eQp81FmCiHwiIpkiUmRWCQ00378OuNRu2S/N9w+fbYiIp4jMF5F08zFfRDzNaRNFJE1E7hCRbBHJEJErG/kcy0XknyLyC1AOJIpIoIi8YS57SEQeExGrOX8vEVlhxp0rIh/ZrUuJyM0iss+c9kx9QSIiFhF5UERSzbjeFZFAc1oPc9nLReSAuewDdusdLSLrRaRYRLJEZJ7dtDEislpECkUkyb46zPyN9pnVbSkicukxvoOHzd/jPXPerSLSR0TuM2M9KCJn2M0fLSJfiEi+iOwRkWuPWNfH5ucrMavoRh6x7GcikmPGdLP5/lnA/cBF5u+eZL5/pYjsMNe1T0T+z25d9b/1PSKSCbwlIr+LyDS7edzN73NYA5+7fvn7zXn2239H5n7wrhlrqvn7NZhDzN+vl/ncW4zqzVRzP/nZfO9rEbnpiOW2iMiMBtbnZf4eeeZv+5uIRNrN0l1EfjG/l+9FJMxu2enm914oxv7d325anIh8bn6mPBF58Rif5xkz7kBpZJ/vNJRS+tHKB7AfmGw+vwKoAa4FrMD1QDog5vS3gcfsln0YeM/u9VWAP+AJzAc2203707INbPtRYC0QAYQDq4F/mNMmArXmPO7AFIyEHnyMz7QcOAAMBNzMZRYD/wV8zW38CvyfOf8HwAMYBxFewHi7dSlgGRACxAO7gWvsPu8eIBHwAz4HFpjTepjLvgZ4A0OBKqC/OX0NMMd87geMMZ/HAHnmZ7QAp5uvw83Yi4G+5rxRwMBjfAcPA5XAmeZ38C6QYn5Od/M3TrGbfwXwsvn5hwE5wKQj1jXF3C+eANaa0yzABuAhwMP8LvYBZza0j5jvnQ30BASYYP6WJxzxWz+FsR95A3cDH9ktfw6w9Rifu375eebyE4Ayu+/sXWAJxn7aw/w9r7bb/38+4rfvZT5/CWO/ijG/g3Hm+i8E1tktM9T8vTwaiO3/gC8BH3MdIzCqTTHXvRfoY37m5cCT5rQ+5mc43fzt7sbY7zzM9SQBz2PsH4f33/rPY/5GrwHfAT5N7fOd5eH0ADrzg6MT/x67aT7mzt/NfP02jST+I9YbZC4b2NCyDWx7LzDFbtqZwH7z+USgAnCzm56NmSwb2PZy4FG715EYSdfb7r1ZwDLz+bvAq0BsA+tSwFl2r28AlprPlwI32E3ri1FwuvFH4o+1m/4rcLH5fCXwCBB2xPbuwSw87N77DuNsyxcoBM63/yzH+A4eBn6wez0NKAWs5mt/M74gIA6oA/zt5n8CeNtuXT/aTRsAVJjPTwQOHLHt+4C3mtpH7OZfDNxi91tXA15206OBEv5Ikp8Cdx9jXRMxEr+v3XsfA3/DSJJVwAC7af8HLLfb/49K/BjJsQIY2sD2PIF8oLf5+lng5WPEdhXGAc2QY+yzDx6xn/3PfP434GO7aRbgkPlZx2IU0m4NrPMKYB3wEfAZdoURjezzneWhq3raVmb9E6VUufnUr6mFRMQqIk+KyF4RKcZI6gBhjSxmLxpItXudar5XL08pVWv3uryJuA7aPe+OcaSUYZ4qF2Ic/UeY0+/GOPr81TydvqqRddnH1VDMbhgFTb1Mu+f2MV+NcSS30zzln2oX68z6OM1YxwNRSqky4CLgr+Zn+VpE+jXyHWTZPa8AcpVSdXavMeOJBvKVUiVHfJaYRj6Hlxj1792B6CPivf+I7+BPROQvIrLWrFYqxDiTsN9PcpRSlfUvlFLpwC/A+SISBPwFWNjI5y4wvyv7zxJtbsODo38z+8/ZkDCMo+K9R05QSlVhFCyzzSqjWcCCY6xnAUYh/qEY1ZlPi4i73fRj7St/2s+UUjaMfTIGo9BOPeJ/w14vjDOkR5RS1XbvN7XPd3g68XcMl2DsYJOBQIwjXjB2LjCOnhqTjpFE6sWb77WW/fYOYhzphSmlgsxHgFJqIIBSKlMpda1SKhrjCPDl+rpdU9wx4moo5lr+nHAbDk6pZKXULIzC5yngUxHxNWNdYBdnkFLKVyn1pLncd0qp0zGqeXZinMIfr3QgRET8j/gsh5qx7EGMKiP7eP2VUlPqP6r9zGJct/kM48g4UikVBHzDH/vJUcuY3gFmAzOBNUqpxmILNr9L+8+SjtEirYajf7OmPmcuRlVXz2NMfwfjGtYkoFwptaahmZRSNUqpR5RSAzCqiqYClzWxbThiPxMRwdgnD2F8//Fy7IvgO4ArgW9FpK9dLE3t8x2eTvwdgz9Gcs3DqCJ6/IjpWRj1v8fyAfCgiISbF7UeAtqkGaBSKgP4HnhORALEuCjbU0QmAIjITBGJNWcvwEg8dXaruEtEgkUkDrgF49S5PubbRCRBRPwwPvNHjRx9HSYis0Uk3Dx6KzTfrsP4zNNE5EzzLMrLvGAZK0Y/iulmUqvCqLqpO8Ymmk0pdRCjCuIJc3tDMM5IGjuqrvcrUGxejPU2Yx4kIqPM6VlAD7sLqB4Y1SM5QK0YjQfOOHq1R1kMnIDx/b/bjPkfEREPETkZI8F+Yp7tfAz8U0T8RaQ7cDtN7Gfmb/QmME+MC9lWERlrFmKYid4GPMexj/YRkVNFZLAYjQqKMQqh5vx+HwNni8gk8wzhDozffzXG958BPCkivubvd9IR8X+AcRb2o4j0NGNpap/v8HTi7xjexTgdPQRsx7hQa+8NYIBZHbC4geUfA9YDW4CtwEbzvbZyGUbS2Y6xo3+KcdQMMApYJyKlwBcY9c0pdssuwbiAuRn42vwsYCSDBRj19SkYR4V/auHRiLOAbeY2/4VR919pJuFzMP5RczCO6O7C2M8tGP/06Rj1yhMw6oLbwiyMs7R0YBHwd6XUD00tZCbTaRgXhFMwjo5fxzjrA/jE/JsnIhvN6qSbMZJZAcaZ4hfN2E4FxplCAsZF9MZkmutOxyi8/qqU2mlOuwnjQuk+jAuf72P8jk25E2O//A3ju3+KP+eed4HBNF6IdMPY74oxjsRXNDE/AEqpXRhnOy9gfL/TgGlKqWq7778XRoOGNIzqwCPX8Q5G44ifRKQHTe/zHV59ixNNa3MiojAu3O1xdiyuTkQeAvoopWY3Ms9EjIvJsceaxxFE5DLgOqXU+PbcrivTHTw0rYsTkRCM6qc5zo7lSCLig3Hm9bKzY3EluqpH07owMTqTHQS+VUqtdHY89kTkTIwquSyMaiOtneiqHk3TNBejj/g1TdNcTKeo4w8LC1M9evRwdhiapmmdyoYNG3KVUuFHvt8pEn+PHj1Yv369s8PQNE3rVEQktaH3dVWPpmmai9GJX9M0zcXoxK9pmuZidOLXNE1zMTrxa5qmuRid+DVN01yMTvyapmkupksn/j0bsvl9ZXPuh6FpmuY6unjiz2Lt4r1UVzZ5bw9N0zSX0aUT/7DJ8VSV17JzTYazQ9E0TeswunTi75YYSLfEAJKWHsRm06OQapqmQRdP/ABDJ8VTnFtJSlKOs0PRNE3rELp84k8cHk5AmBdJPx50diiapmkdQpdP/BaLMOTUODL2FpGZUuTscDRN05yuyyd+gP4nReHh7aaP+jVN03CRxO/h5cbA8dHs3ZhNcW6Fs8PRNE1zKocnfhGxisgmEfnKfJ0gIutEJFlEPhIRD0fHADDktFhEhC3L0tpjc5qmaR1Wexzx3wLssHv9FPC8Uqo3UABc3Q4x4BfsRc8REWz/JZ2qCt2hS9M01+XQxC8iscDZwOvmawFOAz41Z3kHmOHIGOwNPz2emso6tq9Kb69NapqmdTiOPuKfD9wN2MzXoUChUqr+kDsNiGloQRG5TkTWi8j6nJy2aYMfHu9PTJ8gtiw7SF2drekFNE3TuiCHJX4RmQpkK6U22L/dwKwNdqlVSr2qlBqplBoZHn7UTeJbbejkeEoLqti7MbvN1qlpmtaZOPKI/yRguojsBz7EqOKZDwSJiJs5TyzQrvUuPQaFEhTpQ9KPB1FKD+OgaZrrcVjiV0rdp5SKVUr1AC4GflJKXQosAy4wZ7scWOKoGBoiFmHopDiyU0vI2FPYnpvWNE3rEJzRjv8e4HYR2YNR5/9GewfQd0w3vHzd2aw7dGma5oLcmp7l+CmllgPLzef7gNHtsd1jcfewMmhCDOu/3U9hVjlBkT7ODEfTNK1duUTP3YYMmhCDxSok/aSP+jVNcy0um/h9Az3pM7obO1dnUFla4+xwNE3T2o3LJn6AYZPiqK2x8fsqfV9eTdNch0sn/tAYP+IGhLB1WRp1NbpDl6ZprsGlEz/AsMlxlBdXk7w+y9mhaJqmtQuXT/xx/UMIifZl848HdIcuTdNcgssnfhFh2OQ48g6VkbazwNnhaJqmOZzLJ36APqO64R3gweYfDzg7FE3TNIfTiR+wulsYMjGGA9vyyUsvdXY4mqZpDqUTv2ngKTG4uVtIWqo7dGma1rXpxG/y9vOg79godq/Lory42tnhaJqmOYxO/HaGTYqjrtbG1hX6vryapnVdOvHbCYr0oceQMH5fcYja6jpnh6NpmuYQOvEfYdjkOCpLa9i1LtPZoWiapjmETvxHiO4dRHi8P0lLD6JsukOXpmldj078R6jv0FWQWU7qtjxnh6NpmtbmdOJvQM8REfgFe7Lpez2Mg6ZpXY9O/A2wWi0MOz2e9ORCVn2UrJO/pmldSrvcerEzGnJqLCX5lST9eBBbnY0Js/oiFnF2WJqmacdNJ/5jEBFOOr8XVquFjd+lUlenOHV2Pyw6+Wua1snpxN8IEWHMjEQsbsL6r/djq7Mx6bL+WKy6hkzTtM5LJ/4miAgnTkvEahXWfZGCqlNMunIAVp38NU3rpHTib6aRUxKwuFlY8/le6uoUZ1w9EKubTv6apnU+OnO1wAlndGf8zN7s25TD/179Xd+nV9O0Tkkn/hYaOimOUy7uw/4tuXzzyhY9po+maZ2OTvytMHhiLKfO7seB7fl8/fIWanTy1zStE9GJv5UGjI9m0mX9SdtVwNcvJlFdWevskDRN05pFJ/7j0G9sFKdfOYD0PUV89UIS1RU6+Wua1vHpxH+c+ozuxhlXDyQrpZgv/r2ZqvIaZ4ekaZrWKJ3420CvERGced0gcg6UsGT+ZirLdPLXNK3j0om/jSQOC+cvfx1MXnopi5/fREWpvm+vpmkdk078bajH4DDOvn4IhVnlLJ63Sd+0XdO0Dkkn/jYWPzCUqXOHUJxbweJ5GykrqnJ2SJqmaX/SZOIXkZki4m8+f1BEPheRExwfWucV2y+EqTcOpaSgiiXPb9LJX9O0DqU5R/x/U0qViMh44EzgHeA/jg2r84vpE8w0M/kvnreJskKd/DVN6xiak/jru6WeDfxHKbUE8HBcSF1HdO8gpt80lLLCKhbN20hpgU7+mqY5X3MS/yER+S9wIfCNiHg2czkNiOoVxLSbh1FeXM2ieRspya90dkiaprm45iTwC4HvgLOUUoVACHCXQ6NqQ7ZK5yfaqJ6BTL95GJUl1SzWyV/TNCdrTuKPAr5WSiWLyERgJvBrUwuJiJeI/CoiSSKyTUQeMd9PEJF1IpIsIh+JiMOqjQ7dfgdpN93sqNW3SLfEQKbfMpzKsloWPbeR4twKZ4ekaZqLak7i/wyoE5FewBtAAvB+M5arAk5TSg0FhgFnicgY4CngeaVUb6AAuLpVkTeDR6+elK1aRdW+FEdtokUiEwI459ZhVFfUsmieTv6apjlHcxK/TSlVC5wHzFdK3YZxFtAoZSg1X7qbDwWcBnxqvv8OMKPFUTdT8IUXIu7uFCxc6KhNtFhE9wDOuXU4NZV1LHpuI0U55c4OSdM0F9OcxF8jIrOAy4CvzPfcm7NyEbGKyGYgG/gB2AsUmgUJQBoQc4xlrxOR9SKyPicnpzmbO4pbWBgBU6ZQtGgRdSUlrVqHI4TH+3PObcOprbaxeN4mCrN18tc0rf00J/FfCYwF/qmUShGRBOC95qxcKVWnlBoGxAKjgf4NzXaMZV9VSo1USo0MDw9vzuYaFDxnDrbycoo+/7zV63CE8Dgz+dfYWPzcRgqzdPLXNK19NJn4lVLblVI3K6U+MF+nKKWebMlGzNZAy4ExQJCI1N/kPRZIb1nILeM9aCDew4eT/95CVF3HulNWWKwfM24bjs2mWDRvIwWZZc4OSdM0F+Cw9vgiEi4iQeZzb2AysANYBlxgznY5sMRRMdQLmTObmoMHKV250tGbarHQGD/OuW04yqZYNG8T+Rk6+Wua5liO7IgVBSwTkS3Ab8APSqmvgHuA20VkDxCK0VLIofxPPx23yEgKFjSrhqrdhUb7MeP2ExBg8byN5KWXNrmMpmlaazks8SultiilhiulhiilBimlHjXf36eUGq2U6qWUmqmUcvg4BuLuTvCsWZStXk3Vnj2O3lyrhET5MuP24YhFWPL8JnLTOs7FaE3TupbmjM45UkQWichGEdkiIlvNo/hOJejCmYiHB/kdqGnnkYK7+XLu7SdgdbPw+bMbObg939khaZrWBTXniH8h8BZwPjANmGr+7VTcQkIImDqVosVLqCsudnY4xxQU6cP5d48gINSbr15MYsfqDGeHpGlaF9OcxJ+jlPrCbM2TWv9weGQOEDL7UlRFBYWfdaymnUfyC/bivDtPIKZvED+9u4Nfv0pBqQZbvWqaprVYcxL/30XkdRGZJSLn1T8cHpkDeA0YgPfIERQs7HhNO4/k4e3G2TcOpd+4KH77KoWf3t1BXZ3N2WFpmtYFNLcD1zDgLIwqnvrqnk4pZPYcatLSKF2xwtmhNMlqtXDanH6MnpbAzjWZfP1iEtUVtU0vqGma1gi3pmdhqFJqsMMjaSf+kyfh1q0b+QsW4H/aac4Op0kiwqizE/AP8WLZgp18/uxGpt44BL9gL2eHpmlaJ9WcI/61IjLA4ZG0E3FzI/iSSyhfs5aq5GRnh9Ns/cZGMfWmoRTnVfDpUxvITdNt/TVNa53mJP7xwGYR2dWZm3PaC5p5AeLpSf57HbdpZ0Pi+odw3p0jAPj82Q26uaemaa3SnMR/FtAbOINO3JzTnltwMAHTplK0ZAl1RUXODqdFwmL9uOAe3dxT07TWa84gbalAEH9c2A3qrM057YXMno2qrKTw08+cHUqL6eaemqYdj+b03L0FoxNXhPl4T0RucnRgjubVrx8+o0Z1iqadDTnc3HNsN93cU9O0FmlOVc/VwIlKqYeUUg9hDK18rWPDah/Bl82hJj2d0mXLnB1Kq1itFk67rD+jpurmnpqmNV9zEr8A9ofEdeZ7nZ7/qafiHh1NfgcdtbM5RITRUxM47bL+HNpVyOfPbqS0oNLZYWma1oE1J/G/BawTkYdF5GFgLe0wlHJ7EDc3gi+9hPJ166jctcvZ4RyX/uOimHqj0dzzkyfWk55c6OyQNE3roJpzcXceRu/dfKAAuFIpNd/RgbWXoPPPR7y8KHiv8x7114sbEML5d4/Aw9uNJc9vIumng/qir6ZpR2k08YuIRUR+V0ptVEr9Wyn1L6XUpvYKrj1Yg4IInD6doi++pLagwNnhHLfQaD8uuHck3QeH8vPHyfzw5nZqqjvfxWtN0xyn0cSvlLIBSSIS307xOEXw7EtRVVUUfvqps0NpE57ebvzl/wZz4vREktdn8dlTGyjK0Tdz1zTN0Jw6/ihgm4gsFZEv6h+ODqw9efXpg8+YMRS8/wGqtmu0ihGLMHJKD6bdOJTSgko+eWI9+7fmOjssTdM6gGMmfhHxNJ8+gtFb91HgObtHlxIyZza1GRmULP3J2aG0qfiBoVx4/yj8Q734+uUt/PZ1Csqm6/01zZU1dsS/xvx7jVJqxZGP9giuPflNnIh7TAwFCxY4O5Q2FxDmzXl3jaDv6G78+mUK3/xnC1XlNc4OS9M0J2ks8XuIyOXAOPsbsHTmG7E0RqxWgi+9lPL166ncscPZ4bQ5dw8rk67ozykX9+HAtnw+fmI9eYf0CJ+a5ooaS/x/xeilaz9OT6e/EUtjgs4/D/H2Jr8LNO1siIgweGIsM24fTm11HZ8+tZ7dv2U6OyxN09qZNNXOW0SuVko5tcPWyJEj1fr169tlWxkPP0zR54votWI5bsHB7bJNZygrquK7134nY08RQyfFMfa8nlitzbnWr2laZyEiG5RSI498vzkduLpEL93mCpk9G1VdTeHHnzg7FIfyDfTknNuGM+TUWJKWHuSL+ZspL652dliaprUDfYh3BM9evfAdN46CDz5A1XTtC6BWq4WTL+rD5CsHkL2/mI//+SuZ+zrX/Qk0TWs5nfgbEDxnNrWZmZQsXersUNpF3xO7cf49I7C6W1j07EbWf7Mfm27yqWldVrMSv4jEiMg4ETml/uHowJzJb8IE3OPjyX/nXZcZ6yYs1p8L7x9F4gnhrPtiH4vnbaQ4t8LZYWma5gDNuRHLU8AvwIPAXebjTgfH5VRisRByxeVUbNpE4YcfOjucduPp484ZVw9k8hX9yU0r5aPHfmXXOt3qR9O6GrdmzDMD6KuUqnJ0MB1J8MUXU7piBVmPP4HXoMF4Dx7k7JDahYjQd0wUUb2C+PGt7fz41nZSf89jwqw+ePq4Ozs8TdPaQHOqevYBLvcfLxYL0U8+iTUsjEO33trpbsp+vALCvJlx+3BOnJ7Ang3ZfPjYr6Qnd/7RSzVNa17iLwc2i8h/ReTf9Q9HB9YRuAUHE/v8PGqys0m//wGXqe+vZ7FaGDklgfPuOgGr1cKieZtYs3gvdbX63r6a1pk1J/F/AfwDWA1ssHu4BO9hw4i8605Kly4l/823nB2OU3RLCOTCB0bRf1wUG/+XymdPb6Ags8zZYWma1kpN9twFEBEPoI/5cpdSql0buLdnz92GKKU4dMutlCxdSvcF7+JzwglOi8XZ9m7KZtl7O6mrsTF+Zm8GjI9GpEvcglnTupxj9dxtzpANE4F3gP0YN1mPAy5XSq1s+zAb5uzED1BXUkLKBRegKqtIWPQ5biEhTo3HmcoKq/jx7e2k7SwgYWgYp87uh7e/h7PD0jTtCK0esgFj7P0zlFITlFKnAGcCz7d1gB2d1d+f2PnzqSsoIP3Ou1B1rns7Q98gT6bfPIyTLuhF6rY8PvzHr6Ruy3N2WJqmNVNzEr+7UmpX/Qul1G5csJUPgFf//kT+7UHKVq8m95VXnB2OU4lFGDY5npn3jsLLz52vXkhi5Ue7qaly3QJR0zqL5iT+9SLyhohMNB+v4UIXd48UdMEFBJ4zndwXX6Js9Wpnh+N0YbF+zLxvJENOjWXrsjQ+eHQdB7bro39N68iaU8fvCcwFxmPU8a8EXm7PDl0doY7fnq28nP0XXURtXj4Jiz7HPTLS2SF1COnJBSx7bxeFWeX0OTGS8TN74+2n6/41zVlafXH3ODYYB7wLdANswKtKqX+JSAjwEdAD44LxhUqpRnsGdbTED1C1dy8pMy/Eq39/ur/zNuLWnE7QXV9tTR0bvk1l43epeHi5MX5mL/qc2E23/NE0J2jxxV0R+dj8u1VEthz5aMY2a4E7lFL9Me7kNVdEBgD3AkuVUr2BpebrTsezZ0+iHnmEig0byJk/39nhdBhu7lZOnJ7IhQ+MIjDCmx/f3sGXLyTpAd80rQM55hG/iEQppTJEpHtD05VSqS3akMgS4EXzMdFcdxSwXCnVt7FlO+IRf72Mhx+m8MOPiH35JfxPO83Z4XQoNpvi9xWHWLt4L0opRk9LZOhpsVj0nb40rV0cTzv+p5RS9zT1XhPr6IFxbWAQcEApFWQ3rUApddQ9DkXkOuA6gPj4+BGpqS0qZ9qNraqK1FmXUJ2WRsLnn+MRG+PskDqckvxKVn64m/1bcgmP9+fU2f0Ij/d3dlia1uUdTzv+0xt47y8t2LAf8Blwq1KquLnLKaVeVUqNVEqNDA8Pb+5i7c7i6UnMv+aDUhy69VZs1fr2hUfyD/FiyvWDOfPaQZQWVvHJk+tZ/fkeaqp1009Nc4bG6vivF5GtQN8j6vdTgObU8SMi7hhJf6FS6nPz7Syzigfzb/bxfQTn84iLI/qJx6n8/Xeyn3zK2eF0SCJCrxERXPL3E+k/thubvj/Ah4+u4+DOfGeHpmkup7Ej/veBaRiDtE2ze4xQSs1uasViNON4A9ihlJpnN+kL4HLz+eXAklbE3eH4T55MyJVXUvD++xR/842zw+mwvHzdOXVOf2bcNhyxCF/M38zSt7dTWdq172+saR1Js5tzikgE4FX/Wil1oIn5xwOrgK0YzTkB7gfWAR8D8cABYKZSqtHDvo58cdeeqqkh9bLLqdq1ix6ffopnYoKzQ+rQamvqWP/NfjZ9dwBPXzfGzOhJ/7FRiEU3/dS0tnA8F3enAfOAaIxqme4YR/EDHRFoQzpL4geoycwk5dzzcAsLo8dHH2Lx8XF2SB1e3qFSli/cRea+IsLj/Rk/szfRvYOaXlDTtEYdz8XdxzDa4e9WSiUAkzDuwas1wL1bN6KfeYaqvXtJu+02VI2uwmhKaIwf5911AqdfPYCKkmoWPbeR7177Xbf91zQHaU7ir1FK5QEWEbEopZYBwxwcV6fmN/4kuj30EGUrVpLx94dd7s5drSEi9BnVjUseGcOoqQns35LL+1aPRAkAACAASURBVA+vY+2SvVRX1jo7PE3rUpozzkCh2SRzJbBQRLIxeuVqjQi++CJqc3LIfekl3CLCibj1VmeH1Cm4e1gZPTWB/uOiWLNoLxu+TWXn6gzGnNuTvqO76fp/TWsDzanj9wUqMQZouxQIxGie2W5DMHamOn57SikyH/o7hZ98QuRDfyPkkkucHVKnk7mviFUf7SY7tYSIHgGcfGFvuiUGOjssTesU2n2QtrbUWRM/gKqtJe2mmyldvpyYf80n4IwznB1Sp6Nsil2/ZrJm0V7Ki6rpPSqSsef2xD/Eq+mFNc2FtTjxi8jPSqnxIlIC2M8kgFJKBTgm1KN15sQPYKuo4MCVV1G5fTvxb7yOz6hRzg6pU6qurGXT9wfY9MMBBBh+RjzDz+yOu4fV2aFpWoekj/idrLaggNRLZ1Obk0P3997Dq2+fphfSGlScW8Hqz/eyd2M2fsGejD23J71HReqhnzXtCK1uziki/xKRsY4Jy/FqbR3jOrRbcDDxr72Kxdubg9ddR016urND6rQCwrw567pBnHvHcLz83Pnhze188sR6Urfl6RZUmtYMzWnOuRH4m4jsEZFnROSo0qOjenj1w9y14i5nh3GYe0wMca+9hq2sjAPXXkddYaGzQ+rUonsHM/O+UZx2WX8qS2v46oUkFj23kUO7G72vj6a5vCYTv1LqHaXUFGA0sBt4SkSSHR5ZG4j0ieTHAz+yLW+bs0M5zKtvH2JfeomaAwc4eMNcbJWVzg6pU7NYhP7jorj00TGccnEfinIqWDxvE1/8axOZKUXODk/TOqSW3BGjF9AP45aJOx0STRubPWA2AR4BvLz5ZWeH8ie+J44m+pmnqdi0iUN33Imq7RjVUZ2Z1c3C4ImxzPnHWMad34ucg6V89tQGvn55C7lpJc4OT9M6lObU8dcf4T8K/I4xOuc0h0fWBvw9/Lly0JWsTFtJUk6Ss8P5k4CzziLy/vspXbqUzEf/oeum24ibh5Xhp8cz57GxnDg9kfTkQj567De+e+13CjLLnB2epnUIzenA9VfgU6VUbvuEdLTjadVTXlPOWZ+dRf/Q/vz39P+2cWTHL3ve8+S9+iphN91I+Ny5zg6ny6ksq2HzjwdI+imNuuo6+p7YjZFnJxAY7u3s0DTN4Y5nkLZXgbNE5CFzRfEiMrqtA3QUH3cfrhp0FavTV7Mxa6OzwzlK+G23EjhjBrkvvEjBJ584O5wux8vXnTHn9OSyx8YydFIcyRuyef/va1n+/i5KC6qcHZ6mOUVzjvj/gzGe/mlKqf4iEgx8r5Rqt15Ix9uOv6K2gimfTyEhMIE3z3yzDSNrG6qmhoM3zKXsl1+IffEFfdN2ByotqGLD//az/ed0RIRBE2I44czu+AR4ODs0TWtzx3PEf6JSai7GeD0opQqATvVf4u3mzTWDr+G3zN9Yl7HO2eEcRdzdiZ3/PF4DB3Lottsp37jJ2SF1WX7BnkyY1ZdLHxlDn9GRbPnpIO8+sJoVH+yiKEcPA625hmYNyywiVsxhG0QknD/uqNVpXNDnAiJ8Inhp80sd8kKqxdeXuP++glu3SNKuv57K3budHVKXFhDmzWmX9eeSh8fQd3Qk239JZ+FDa/j+9d/JOahbAWldW3MS/7+BRUCEiPwT+Bl43KFROYCn1ZPrBl/HpuxNrE5f7exwGuQWEkL8668jHh6kzp5D+W+/OTukLi8o0odT5/TnssfGMWxyPPt/z+Pjf/7Gl//eTNqugg55kKBpx6tZY/WISD+MO28JsFQptcPRgdlrq7F6aupqOHvR2YR6hfL+2e932LFdqtMOGcM6HDxI9DNPE3DWWc4OyWVUldfw+8pDJP2URkVxNRHd/TnhzO4kDAvHou8FoHUyrRmdM6SxFTZ1g/S21JaDtH22+zMeXvMwL572IhPiJrTJOh2hrrCQgzfMpWLTJiLvvYeQyy93dkgupbamjp1rMtn0wwGKcyoIivRh2OQ4+o2Jwurekn6PmuY8rUn8KRj1+gLEAwXm8yDggHn/3XbRlom/xlbD9EXT8ffw56OpH3XYo34AW2Ul6XfdTckPPxBy+eVE3HM3YtFJpz3ZbIp9m3LY+F0qOQdK8An0YOhpcQw8JQZP7+bcwE7TnKfFrXqUUglKqUTgO2CaUipMKRUKTAU+d1yojuVucef6YdezI38HSw8sdXY4jbJ4eREz/3mCZ88m/513OHTHHdiqq50dlkuxWIReIyKYed9Ipt8yjJAoX9Ys2su79/3CmkV7KCvSfQG0zqc57fg3KKVGHPHe+oZKEUdp6/H4a221nLvkXNwsbnw2/TMs0rGPopVS5L/5JtnPPIvPqFHEvvgC1kB9+0FnyU4tZuN3B9i3KRuxCD1PiGDwxFi6JQZ06DNIzfUcTzv+XBF5UER6iEh3EXkAaLf77TqCm8WN64dez57CPXy//3tnh9MkESH06quJfuYZyjdvJnX2bGoyMpwdlsuK6B7AWdcN4pJHxjDolBhSt+by+TMb+Pjx39j+Szo11XXODlHTGtWcI/4Q4O/AKRh1/iuBRzvrxd16NmXj/C/Op07VsWj6IqyWznH7vrK1a0m78SYsPj7EvfYqXn37Ojskl1ddWcvuX7PYujyN/PQyPH3c6DcuisETYggM93F2eJoL07debMAPqT9w+/LbeXz840zr2SkGHAWgctcuDl73f9jKyoh98QV8x4xxdkgaRpVcxp5Ctiw7xL7NOSiliB8QyuCJMXQfGIro5qBaO9OJvwE2ZePCLy+kvLacL2Z8gZul87TSqMnI4OB111G1P5Xoxx8ncNpUZ4ek2SkrrGLbqkNsW5VOeXE1AWFeDDollv4nReHl6+7s8DQXcTx1/F2WRSzMHTaXgyUH+XLvl84Op0Xco6LovnAhPsOGkX7XXeS9/rruZdqB+AZ5MnpaIpc9Po4zrhmIb5Anqz/fw9v3/sJP7+4g54AeFkJzHpc+4gfj9PySry8hvzKfr879Cndr5zoas1VXk37PPZR8+z+CL72UyPvvQ6yd43qFq8lNK2HrikPsXpdJbbWNyIQABpwUTa8REXjoPgGaA7T6iF9EEkXkSxHJFZFsEVkiIomOCbP9iQhzh88lvSydRXsWOTucFrN4eBDz3HOEXHEFBQsXcujWW/V9fDuosFh/Tr20H1c8eRLjZ/amqryWZe/t5K17fubHt7YbYwPZOv6BmNb5NadVz1rgJeAD862LgZuUUic6OLbDHHnED8ZR/5xv55BZlsnX532Np9XTYdtypPx33iHryafw6t+f6GefxTOx3TpXa62glCIrpZgdazLY81sW1ZV1+Id60W9MN/qNjSIgTN8lTDs+rb64KyLrjkzyIrJWKdVuTUkcnfgB1mas5drvr+Xe0fdyaf9LHbotRyr56Scy7rsfW3U1kffdS9DMmbpTUSdQU13Hvk057FyTQdquAlAQ0zeI/mOjSBwegbunrr7TWu54Ev+TQCHwIUY7/osAT4yzgHYZrK09Er9Siqu+u4r9xfv55rxv8HbrvEdbNVnZZNx3L2Wr1+A3eRJR//gHbsHBzg5La6bivAp2rc1k55oMinMrcfey0mtEBP3HRtGtZ6AuyLVmO57En9LIZGWO5+NQ7ZH4AdZnrufK767kzpF3cvnAzj0aprLZyH/nXXLmzcMaFETUk0/gd9JJzg5LawFlU6TvKWTnmgz2bMyhtqqOwAhv+o2Not+YbvgFezk7RK2D0+34m+na769ld8Fuvj3vW3zcO3+vy8odOzh0511U791LyBVXEH77bVg8OtWdMzWM3sF7N2azY3UGGXuKEIHoPkH0GhFJzxPC8fbTv6l2tOM54vcCbgDGY1T1rAJeUUq1W9OR9kz8STlJzP5mNreccAvXDL6mXbbpaLaKCrKfeYaC9z/As18/Yp59Bs9evZwdltZKhdnl7FqbyZ4N2RRmlSMWIa5fML1GRpAwNFx3ENMOO57E/zFQArxnvjULCFZKzWzzKI+hPRM/wA0/3sCW3C3877z/4efh127bdbSSZcvIeOBBbGVlRNxzN8GzZun64k5MKUXuwVL2bMgieX02JXmVWKxC/IAQeo2MJGFImO4f4OKOJ/EnKaWGNvWeI7U68W/+AMpzYdxNLVpsW+42Lv76YuYOm8tfh/615dvtwGpzcki//wHKVq3Cb+JEov75GG6hoc4OSztOSimy95eQvCGLvRuyKS2owupmofugUHqNjKDH4DDdMsgFHU/ifxujamet+fpE4HKl1A1NLPcmxk1bspVSg8z3QoCPgB7AfuBCpVRBU8G3OvF/dg1sWwx//Rki+rVo0Zt/upnfMn/jw6kf0j2ge8u33YEpm42C9xaS/eyzWAICiH7icfxOPtnZYWltRNkUmfuKSN6Qzd4N2ZQXV+PmYaHHkDB6j4gkflAIbu66EHAFrbn14laMOn13oC9wwHzdHdhen8wb2eApQCnwrl3ifxrIV0o9KSL3YlQZ3dNU8K1O/KU58NIoCOsLV34LLbhtYVpJGpd8fQmBnoG8N+U9Aj273o1PKnftJv3OO6lKTiZ4zhwi7rwDi2fn7LymNcxmU6QnF7JnfRZ7N+VQWVqDu5eVHoPDSBgSRvygUH0LyS6sNYm/0cNcpVRqMzbaA/jKLvHvAiYqpTJEJApYrpRqckD546rj37QQltwAU5+HkVe1aNENWRu45vtrGBk5kpcnv4y7petdNLNVVZH97HMULFiAZ+/eRD/7jB7jv4uy1dlI21XAnvXZpGzJpbK0BotFiO4TRMLQcBKGhuEfopuIdiVOac7ZQOIvVEoF2U0vUEo12LNIRK4DrgOIj48fkZraZDnTMKXgnWmQkQRzf4WAqBYtvnjPYv72y9+4qO9FPDjmwdbF0AmUrlxJ+v0PUFdYSPCsWYTPvQFrUFDTC2qdks2myNpXREpSLilbcinMKgcgLM6PHkPCSBwaTlicn77438l1usRv77hb9eTthZfHQt+z4MJ3W7z4vPXzeGvbW9x/4v3M6jer9XF0cLUFBeTM/xeFn3yC1d+fsJtuIviiCxH3rnemo/1ZQWYZKVty2Z+US8a+IlDgF+xJjyFGlVBMn2Cs7i49inun1FESf/tX9dRb+Sz89A+4+APoN6VFi9bZ6rh1+a2sSlvFy5NeZlzMuOOLpYOr3LWLrMefoHzdOjx69iTy3nvxO3m8s8PS2klFSTX7t+aSkpTLwR351FbbcPeyEj8glIShYXQfFKr7CnQSHSXxPwPk2V3cDVFK3d3Uetok8ddWw6sToKIQ5q4Dr4AWLV5eU86cb+eQUZrBe1PeIzGoy4xM3SClFKU//UTWU09Tc+AAvhNOIfKee/BM7NqfW/uz2uo60nYWkJKUQ8rWPCqKqxGBiB4BxA0IIX5AKJE9/LFY9dlAR9TuiV9EPgAmAmFAFsYN2xcDHwPxGK2EZjZnkLc268B18Dd443QYfR1MebrFi2eUZnDx1xfj6+7L+1PeJ8ir69eB26qrKVjwHrn/+Q+2ykpd/+/ClE2Rtb+Y1G15HNyeT/b+YpQCD283YvsFEz8ghLgBIQSEdt4BDrsaPVZPvW/ugl9fg2t+hNijvo8mbc7ezNXfXc2Q8CG8evqrne6OXa1Vm5dHzr9f+KP+/+abCL7oIsRNNwV0VZVlNRzckW88tudTWlAFQFCkj3k2EEJMn2DdccyJdOKvV1kML50I3sHwfyugFYn7q31fcd+q+ziv93k8PPZhl2r58Kf6/149ibxH1/9rRtVgQUY5B7bncXBHPod2F1JXY8PiJkT1DDp8NhAW44dYXOf/xdl04re382v48BKY9Hc4+fZWreKFTS/w6pZXu8QQzi2l6/+1ptTW1JGRXHS4IMg7VAaAt787MX2Cie4dREyfYIKjfFzqwKm96cR/pI9mQ/IPcP1qCO3Z4sVtysadK+7kx9QfeeG0F5gQN6Ft4+sEjqr/v/hiQq+9BvfISGeHpnUwZYVVHNieT9pO42ygrNCoFvL2dye6dzAxfYKI7hNESJSvLgjakE78RyrOgJdGQ/RwuGwJtGJnq6it4Ir/XcH+ov0smLKAPsF92jbGTqI2L4+cf/2bwk8/BauVwKlTCb3qSjx793Z2aFoHpJSiOLeCQ7sLSd9dyKHdBYevDxgFQdDhs4KQKF9dNXQcdOJvyG9vwNe3w4z/wLBLWrWKrLIsZn09C3eLO++f/T6h3q470mV1Whr5b79D4WefoSoq8JswgZCrr8Jn1Ch9FKcdk1EQVHJodwHpyYUc2vVHQeDl505Mb+NsIKZPsC4IWsglE//yXdnklFQxc2RcwzPYbPDWWZC7G25cD75hrYpvW+42rvjfFfQL6cfrZ76Op9W1BzqrLSig4IMPKHhvIXX5+XgNGULo1VfjP3kSYtUtPLTGKaUoyTMLgt2FpO0uoDTfKAg8vN2ITAigW2Ig3RIDiEwI1IPMNcLlEr9SiqvfWc/Pybl8ev1YhsQeo9159g545WQYdB6c92qrY/xu/3fcueJOpiVO45/j/6mPcAFbZSVFixeT9+Zb1Bw4gHv3eEKvvJLAGTOweOnBwLTmK86tID25kMx9RWTuKyYvvdQYK1ggJMrXLAiMwiAoUl8wrudyiR+goKyaqS/8DMBXN40n2PcY9yX96Z+w8mmY/Tn0mtTqOF9JeoWXNr/UpW7b2BZUXR0lPy4l7/XXqdy6FWtICMGzLyV41izcgpscqknTjlJdUUvW/mKzICgiK6WYqvJaALx83YlMDKBbQiDdegYS0d0fDy/XPCtwycQPkHSwkJmvrGFcr1DevHwUlobqB2sq4ZWToK4GblgLHq27ybpSintW3cO3Kd8yf+J8JnVvfSHSFSmlKP/tN/LfeJPSFSsQb2+Czj+fkCuuwCM2xtnhaZ2YsikKMsvJTCkic69RGBRkGiOOikBorB+RPQKI6B5AeLw/ITG+WF1gmAmXTfwAC9am8rfFv3PH6X24adIxWprs/xnePhtOugVOf7TV26qsreTq764muTCZx8c/zuTuk1u9rq6sKjmZvDffouirr8BmI+DMMwm66CJ8Ro1EWnDDHE07lsqyGrJS/jgryDlQcviswOpmITTWj4h4f8K7+xPRPYCQKJ8uN+aQSyd+pRS3fbSZJUnpLLjqRMb3PsZF3CU3wub34brlEDWk1dvLrchl7tK5bM/bzsw+M7lr1F14u+nxSxpSk5VF/rvvUvjRx9hKS3GPjibgnOkEnXMOHj16ODs8rQupb0aanVpCdmoJOanF5BwoobqyDgCru4WwWD8iugcQ0d2f8Hh/gqN8G64l6CRcOvEDlFfXMuOlX8gtrebrm8cTFdhAIq4ogBdHQ2AMXLMULK1vgVJTV8MLm17grW1v0TOwJ0+d8hR9Q/SdrY7FVlFByY9LKVq8mLI1a8Bmw3v4cALPOYeAKX/BGtCy0VQ1rTmUTVGUU0F2arFZIBSTc7CU2iqjMHDzsBAe509YnD9hsX6ExvoREu2Lu0fnaJ3m8okfYG9OKdNf+Jm+3fz58LqxeLg1cFr3+2fw6VVw1pMw5vrj3ubq9NU88PMDFFcVc/vI27mk3yW6xUETarKyKP7ySwoXL6Z6z17EwwO/SacReM45+I0frweG0xzKZlMUZpWTc7gwKCH30B+FgQgERvgQGuNHWKzf4QLBL9izw/1v68Rv+npLBnPf38iVJ/Xg79MGHj2DUvD+hbD/F5i7FoLij3ubeRV5/O2Xv7Hq0ComxE7g0ZMeJcQr5LjX29Uppajctp2ixYsp/uor6goLsYaFETh1KoEzzsGrXz9nh6i5CGVTFOVWkHeolNy0UvLSSsk7VEpxbuXheTx93AiNMQqB+gIhJMoXNyeeHejEb+eRL7fx1i/7efGS4UwdEn30DIUHjBE8u4+DSz4+riqfekopFu5YyLwN8wjyDOLxkx9nTNSY416vq1DV1ZSuWkXR4sWULF8BNTV49utH4IxzCJw6Fbew1nW+07TjUVVRS75ZGOQeMguE9LKjzg5ConwJjqr/60twpE+7FAg68duprrVx8atr2JVZwpIbx9Mrwu/omX59Db65E/pPg/NeB/e26XC0M38nd6+8m/1F+7ly0JXcOPxG3C2uMaZ/W6ktKKD4m28oWryEyq1bwWrFZ9Qo/E+diN/EiXh07+7sEDUXdvjsIM08OzhUSkFmOUU5FSibkW9FICDMm+AoX0KifAmJ8jEKhG6+bXr/Ap34j5BRVMHZ//6ZUF8PFs89CV/PBuqN1/4H/ncvdB8Ps94Hr8A22XZ5TTlP//Y0nyV/xqDQQTx9ytPEBRxjWAmtUVV791K05AtKl/1EVfIeADwSEvCbOBG/UyfiM3y4vlm81iHU1dgozC4nP6OMgowy8jPKKcgsozCrHFvdH3nYP9Tr8JlBSJQPCUPDW32PY534G/Bzci5z3lzH9KHRzL9oWMMXZrZ8Aov/CuH9Yfan4N+tzbb//f7veXjNw9TZ6nhwzINM6zmtzdbtiqrT0ihdtpzS5csp//VXVE0NloAA/MaPx+/UU/E7eby+ZaTW4dTV2SjOqfhTgZCfUUZhZjl1tTYufWQMQZGt61SqE/8xvPhTMs9+v5t/nDOQOWN7NDzTnqXw0RxjELc5i1o1fv+xZJRmcO+qe9mYvZGpiVN54MQH8PNooOpJa5G60jLKVv9C6fIVlK5YQV1eHlgseJ8wHP+JE/E79VQ8EhM7XCsMTatnsxn9DgLCvFvdl0An/mOw2RTXvLueVck5fPLXcQyLO8YRYdoGWHgBiAVmfwbRw9oshlpbLa9tfY1Xkl4h2jeap095msHhg9ts/a5O2WxU/v47JcuWUbp8BVU7dgDgHhdnVAmNPwnvE07A6u/v5Eg1rW3pxN+IwnJjMDelmhjMLTcZFpxrdPS6eCEkTmzTODZmbeTeVfeSU57Deb3PY/aA2SQEJrTpNjSoycw0zgSWLaNs7VpUVRVYLHj27YvPyJH4jBiBz8gRuqWQ1unpxN+ELWmFXPCfNYztGcpbVxxjMDeA4nR473zI2wPn/tcYzrkNFVUVMX/jfL7Y8wXVtmpOjjmZOQPmMCZqjK6WcABbRQUVSUmU/7ae8g0bqNi8GVVptM326NEDn1Ej8R4xAp+Ro3CPida/gdap6MTfDAvXpfLAot+5bXIfbpncyG0DKwrgg1lwYC1MeQZGX9vmseRV5PHxro/5cNeH5Ffm0zu4N3P6z2FK4hSXv9GLI6nqaiq3b6d8wwajMNi4EVtxMQBu3boZZwQjR+AzciQePXvqgkDr0HTibwalFHd8nMSizYd458rRnNIn/Ngz11QYQzvs+gZOuRtOvb9V9+1tSlVdFd/s+4YFOxaQXJBMiFcIF/e9mAv7XujSt3lsL8pmoyo5mfL166kwC4PanBwArEFBeA8fjtfAgXgN6I/XgAG4RUbqwkDrMHTib6aK6jpmvPQL2SWVfH3zyUQHNTKqZl0tfHULbHoPRlwBZ89rk16+DVFKsS5zHQu2L2Bl2ko8LB6cnXg2swfMdtmbvDuDUoqagwf/VDVUnZJiDPUBWENC8OpvFAL1hYF7XJwealpzCp34W2BfTinTX/yFhDBfXr1sRMMjedZTCpY+Cj/Pg35T4fw32qyX77GkFKWwcMdCluxZQmVdJWOixjBnwBzGx4zHIjrBtDdbWRmVu3ZTuWM7ldu3U7l9B1V79kBNDQAWX1+8+vfHc0B9gTAAz8REPdic5nA68bfQj9uzuOmDTbhZhYemDuCCEbGNn8I7qJdvYworC/k0+VM+2PEB2RXZ9AjowZwBc5iaOBUf99Z1+NDahq26mqrkZCq3b6dqxw4qt22ncteuwxeOxdMTzz598OzZE4/ERDwTE/BITMQjLk73NNbajE78rZCaV8Zdn2zh1/35nNYvgifOG0xkQCNH81s/hUV/hfB+bd7LtzE1thq+3/89C7YvYFveNtwsbgwLH8bY6LGMjRrLgNABWB1UBaU1n6qtpXr//sNnBZU7d1K9bx+12dl/zOTmhkd8PB6JCXgmJP6pUND9DLSW0om/lWw2xdur9/P0dzvxsFp4ePpAzh0ec+yj//pevj6hMP4WGDDD6PHbDpRSJOUksezgMtakr2FHvtFRKcAjgBOjTmRs9FjGRY8jxk/f37YjqSstpTolhep9+6jau4/qlH1U7UuhOjUVamsPz2cNDzMKg56JeCYk4B4Xh0dsLO7R0Vh8fZ34CbSOSif+47Qvp5S7Pt3ChtQCJveP5PHzBhHhf4yj/0MbYPFcyNkBYjU6eg2+APqd3S5VQPXyK/NZl7GO1emrWZO+hqzyLADi/eONs4HosYzuNhp/D30k2RGpmhqq09L+KBT21f/dd7iJaT1rcDDusbG4x8TgERuDe0zM4dfu0dFYvBx73UnrmHTibwN1NsVbv6Tw9He78PGw8sj0gUwfeoxOPUpB1jb4/VPjrl6FB8DqCb1PNwqB3meCR/vVwyulSClOYU36Gtakr+HXzF+pqK3AKlYGhQ1iXPQ4xkaPZVDYID1MdAenlKIuP5+atDSq09KoOZROTVoaNYcOHX4o88JyPWt4GB7RdoVBVDfcIiNxC4/ALSICt7BQxKqrA7sanfjb0J7sUu78JInNBws5c2Akj80YTLh/I52qlIK09UYhsG0RlGaBhx/0nWIUAomngtsxholwkJq6GpJykliTYRQE2/K2YVM2PCweJAQm0DOoJ72Ceh3+G+MXo68TdBLKZqM2J5eaQ2ZhkJZGdX2hkHaImoyMP1UhAWCx4BYWZhQCkZG4RYTjHhGBW0Sk8V5EBG4R4ViDgnQ/hU5EJ/42VmdTvLZqH/O+342vp5V/zBjU8N28jmSrg/0/G4XA9i+gshC8g6H/dKMQ6H6Sw/oCNKaoqoh1GevYmruVPYV72Fu4l4yyjMPTPa2eJAYm0jOo558KhRi/GN2EtJNRdXXU5uVRm5VNbU42tdnZ1GRlUZudTW12DrXm87rCwqOWMh991QAAEIRJREFUFQ8P3MLCsIaGYg0Jxi04BGtoCG4hIViDQ4z3QkOxBofgFhKMxUe3LnMmnfgdJDmrhDs/SSIprYizB0fx6DkDCfVr5pAKtdWw9yejENj5DdSUgV83GDgD4kZDaG8I7dWuVUL2ymrK2Fu4l72Few8XBsmFyWSX/9EKxdvNm4TABHoF9SIhMIFIn0jj4RtJhE8E3m6N9IHQOjRbVRW1OTlmgfBHAVGXm0ttfgF1eXnUFhh/VXV1g+sQb2/cgoOxhpgFRFAw1qBALAEBWAMCsQYFYg0IwBoYiCUgEGtgANaAAN2ktY3oxO9AtXU2/rtyH/N/3E2AlzuPzRjEXwZHtWwl1eWw+//bO/dY2aq7jn++e8/rnHte3HvhXsrDAl4blQilBBFtQ1KLQLRYUw1GKxGTpqEktrGNGGKD/mNrq4n2YaUttppasSJKWhDQ0rQxQrFXoCBt74UC0l7um5l7HnNmZq+ff6y158yZO3M453JmpvfO+iQ76/Vbe/1m7b1/v73X3rPWv/n3AXsegKzjQpo5G7b/qHcC23aF+C6YPQdG8I/QWqPGsy8/23YGeXhw6eBxstOlaXZMeieQb93prZWt8anhJMbMcAuLZEePkB05QuvwEbKjR2gdOULWjgdH8fJRXLWGW1hYc5/J5CTJ7CzpbO4YZryzmJommZ4mmdpCOjVFMjVFsmVqJT097fMmJ+O/pYmGfyh856Vj/N4XH+PJ79e45sKdXHHBNnbMVNg5W2HnTIVtU2XS9Syo0FyCw8/A4T1waG8I9/gZQZc7vuYoVGDrBX5hmO27glPYBTOv8cNHxeHebS80F9i/uJ8Diwfa2/6F1elD9UM4c6vqFZICp0+czlx5jpnyDDMlv82WZ328PMNsaXZVOFOaYao4FcebT1Ks2SQ7doysWsVVq2S1Glm1RlatktWquHa8FtJVsmoNNz+PW1xcVxvJli3eCUwFx7BlC5qY9E5lYsKHkz7U5CRJXhbychnl8XIZisWT6pyLhn9INDPHJ7/6DB97aC/LrdUGLk3E6VNldsxW2DlTZudMhR2zFXZMe+eQO4mpXuv/gn9JvHAwOIEOZ3BoDxx9DixbLZ+WvQOYOA0m5nxYmVsjbw7KM37KicIEpJs/pUDLtTi8dHjFMQRHcXDpINXlKtXlKrVGjVqjRnW5StM1++4rVcp0aZqZ0gxbiluYKEwwWZz0YWFyVXrNsnSCUlqinJbbYXyR/cOLZRlucRF37BjZ/DxufgG3MI+bn/fpYz7uFuZXyo8d83WWllaFtk4n0iZNScplFBxB/7BCUq6gSoWkUkGlEiqXUbnky0s+rlJIh7ykHOSCfFIqoYmJE356+aEy/JKuBv4CSIFPm9kH15I/mQx/TuaMw/PLvFSr81K1zv5anf01n97fkVert46ru6WUMlUpMFFMqYTNxxMmSimVQkolhBOlhEohZbLgOL25j23LLzDVPEK5VaXcrFJu1ig2a5QaL1No1Cg2qqSNKmlz7UdtAEsK/qki34oTUKygwsSKcyh2lScFSIuQFCEteeeRFENeIeQVu+TCptTnJykkKUZCHUctq1NtLVFrLVJtLVILW7U5T625QK15jMVWncVWnaWszmJrkaVWCJtLNFzv8ee1KKhAMS2ucgad8XaYlCgkBYpJsXeYFtv7aocd5YWkQEEFUqWkSerjSUoh8Xl52KssVUqixIdJQkGFlbQSEiUn1d3pKDDnsHp9tVPo2KztKOpYfQlXX/by9fr6wuXl9jQdJ8r5X/4S5QtObLnXfoZ/6LNESUqBjwNvAV4EHpV0j5n977B1GSRpIs6YqXDGTIWfOru/3GKj5R1Ctc6BY7lDWGZhuUW9lbHUyFhqZiw3HYfmG9SbPl1vZtSbjqVmRuY6nfe2sK1NkRazLDCreWZZYC6E01qkTJMKDSpqUGmsxMs0KNNkQotUqFJRgwl8vi9vUiCjQEaR4x3aRhEwEbYdJ1DfIYyEphIWlLKYpiwkKUtKWExSFpOEhSRhWWJZCY1ENBDLiWioxbIyGlqmIWhIIYQGMC84EtIZ0BK0MFpASyHEaI3Y7iaIFJEgEomUpB1PQr4kEhLSEE9JQl4u553I6rTaeXl9hTy/n+B48johnbRlkxUdlEB7f7nDor0P78wSCLJpV7lISJK8rfCrwv4UtlzPPK2OdtWhk5SgotBsQjK3opeYRJps11VwqupoT1LYbxr2G2QNlDnUzEiaGQpb0mhBs4laGUkjQ80myvMaLdRoQqNJa26azV6BYxTTA14G7DWzZwEk/QNwHXBKGf71MlkqcN72AudtP/G/3Dczt+IMGo5G5mg5RyszMmer4k1nZCHdcn7LnKPZljWc83FnPl0146gzMgeZhXJbkcvMMKNdx5nhMsOshVyTxLUgayJrkTifJ9cksRZyLRJroqyJzCFrIXNgGYllq/J82m8rcZ+fEGRxIc+RkIE5kjyvFUK8XC5TMKOII8E6ys3LYKRtF2IkuFXpVLnsSnnSTvt2DMhkmByZDIeRyWECh2GJkQEWylzId7J2XRccTGeerwMu1DWgJeGATN7xZXm9EHeIlvD7QKEtn78SB5fvpyPu84NsO547WIKOIR7Sdty+V2SN1eWw0r6hld/WoZN1pO1UfppJad/1fOrFS7h82zWbuvtRGP6zgP/rSL8I/HS3kKR3Au8EOPfcc4ej2UlKMU0opgkzlfgJ3GZjZjij7dDM/KsWZ8EAOwMDw8vl8sbxsi48meX7yfMt3293WXiQcz3KrV13dZs4w8xhlmHOQp7DgjM1A3NZSBtm3tmZL/AhhnMOLJhdZxgOnAu/1ZeZC2a4Xd+b5HY8rx/aIW8z5KmjvTxfXfsR+HdX4XfmZeHghN/hcOaCXl5XMxeOgfnnMIPgZkN5rocL/ZgBeZ/7/ThsZT/B5Vhw6hbawVZK6JBp7z/PCwezW667bHUdn3vm1hMb5lmLURj+Xm76uBcNZnY7cDv4Mf5BKxWJ9EISqSDtedpGIicno/jQ9UXgnI702cAPRqBHJBKJjCWjMPyPArsknSepBFwP3DMCPSKRSGQsGfpQj5m1JN0M3I9/hXGHmT01bD0ikUhkXBnJop9mdi9w7yjajkQikXEnTmYRiUQiY0Y0/JFIJDJmRMMfiUQiY0Y0/JFIJDJmnBSzc0o6CDx/gtW3A4c2UZ3NIuq1MaJeGyPqtTFOVb1+xMxO7848KQz/q0HSf/eanW7URL02RtRrY0S9Nsa46RWHeiKRSGTMiIY/EolExoxxMPy3j1qBPkS9NkbUa2NEvTbGWOl1yo/xRyKRSGQ143DHH4lEIpEOouGPRCKRMeOUMfySrpb0HUl7Jd3So7ws6c5Q/oik1w5Bp3MkPSTpaUlPSfrdHjJXSqpKeixsHxi0XqHd5yR9K7R53Er28vxl6K8nJF0yBJ1e19EPj0mqSXpPl8xQ+kvSHZIOSHqyI2+rpAcl7QnhaX3q3hBk9ki6YQh6fVjSt8NxulvSXJ+6ax7zAeh1m6Tvdxyra/vUXfPaHYBed3bo9Jykx/rUHWR/9bQNQzvHLCyLdjJv+OmdnwHOB0rA48BPdMncBHwyxK8H7hyCXmcCl4T4NPDdHnpdCXxpBH32HLB9jfJrgfvwK6ZdDjwygmP6Ev4PKEPvL+BNwCXAkx15fwrcEuK3AB/qUW8r8GwITwvx0was11VAIcQ/1Euv9RzzAeh1G/C+dRznNa/dzdarq/zPgA+MoL962oZhnWOnyh1/ewF3M2sA+QLunVwHfC7E/wl4szTY1ZrNbJ+Z7Q7xY8DT+DWHTwauA/7WPA8Dc5LOHGL7bwaeMbMT/cf2q8LMvgYc6cruPIc+B/xyj6q/ADxoZkfM7CjwIHD1IPUyswfMrBWSD+NXtRsqffprPazn2h2IXuH6/zXgC5vV3npZwzYM5Rw7VQx/rwXcuw1sWyZcJFVg21C0A8LQ0uuBR3oU/4ykxyXdJ+knh6SSAQ9I+qb8wvbdrKdPB8n19L8gR9FfADvMbB/4Cxc4o4fMqPvtRvyTWi9e6ZgPgpvDENQdfYYtRtlfbwT2m9mePuVD6a8u2zCUc+xUMfzrWcB9XYu8DwJJU8BdwHvMrNZVvBs/nHER8FHgX4ahE/CzZnYJcA3wbklv6iofZX+VgLcCX+xRPKr+Wi+j7LdbgRbw+T4ir3TMN5u/Ai4ALgb24YdVuhlZfwG/ztp3+wPvr1ewDX2r9cjbUJ+dKoZ/PQu4t2UkFYBZTuzRdENIKuIP7OfN7J+7y82sZmbzIX4vUJS0fdB6mdkPQngAuBv/yN3Jevp0UFwD7Daz/d0Fo+qvwP58uCuEB3rIjKTfwgu+XwR+w8JAcDfrOOabipntN7PMzBzwqT7tjaq/CsCvAHf2kxl0f/WxDUM5x04Vw7+eBdzvAfK3328HvtLvAtkswhjiZ4CnzezP+8jszN81SLoMf0wOD1ivLZKm8zj+5eCTXWL3AL8lz+VANX8EHQJ978RG0V8ddJ5DNwD/2kPmfuAqSaeFoY2rQt7AkHQ18PvAW81ssY/Meo75ZuvV+U7obX3aW8+1Owh+Hvi2mb3Yq3DQ/bWGbRjOOTaIN9aj2PBfoXwX/4XArSHvj/EXA0AFP3SwF/gGcP4QdPo5/CPYE8BjYbsWeBfwriBzM/AU/muGh4ErhqDX+aG9x0PbeX916iXg46E/vwVcOqTjOIk35LMdeUPvL7zj2Qc08XdYv4N/J/QfwJ4Qbg2ylwKf7qh7YzjP9gK/PQS99uLHfPNzLP967TXAvWsd8wHr9Xfh3HkCb9DO7NYrpI+7dgepV8j/bH5OdcgOs7/62YahnGNxyoZIJBIZM06VoZ5IJBKJrJNo+CORSGTMiIY/EolExoxo+CORSGTMiIY/EolExoxo+CORTUDSnKSbRq1HJLIeouGPRF4lklJgDj8D7EbqSVK8BiNDJ550kbFD0q1h/vd/l/QFSe+T9FVJl4by7ZKeC/HXSvq6pN1huyLkXxnmU/97/J+UPghcEOZu/3CQeb+kR8MkZX/Usb+nJX0CP+/QOZI+K+lJ+bnf3zv8HomMG4VRKxCJDBNJb8BPC/B6/Pm/G/jmGlUOAG8xs7qkXfh/gl4ayi4DLjSz74UZFi80s4tDO1cBu4KMgHvCJF8vAK/D/9vypqDPWWZ2YajXcxGVSGQziYY/Mm68Ebjbwpw2kl5pXpgi8DFJFwMZ8GMdZd8ws+/1qXdV2P4npKfwjuAF4HnzaxyAX0TjfEkfBb4MPLDB3xOJbJho+CPjSK95SlqsDH1WOvLfC+wHLgrl9Y6yhTXaEPAnZvbXqzL9k0G7npkdlXQRfnGNd+MXBrlxPT8iEjlR4hh/ZNz4GvA2SRNh9sVfCvnPAW8I8bd3yM8C+8xPLfwO/FKBvTiGX0Iv537gxjDfOpLOknTcohphSunEzO4C/hC/TGAkMlDiHX9krDCz3ZLuxM+G+Dzw9VD0EeAfJb0D+EpHlU8Ad0n6VeAh+tzlm9lhSf8pv6j3fWb2fkk/DvxXmEV6HvhN/HBRJ2cBf9Pxdc8fvOofGYm8AnF2zshYI+k2YN7MPjJqXSKRYRGHeiKRSGTMiHf8kUgkMmbEO/5IJBIZM6Lhj0QikTEjGv5IJBIZM6Lhj0QikTEjGv5IJBIZM/4fcVflSqymqJ4AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3gU1frA8e+76b2HNELo0nuVK6ioWEDEjmAXO171qvfqtfdrw/67dgULCgjYC9KUZijSa0JCCum9J3t+f8yEu2LKJmSzKefzPPtkd+o7u5N3Zs6cOUeUUmiapmmdh8XZAWiapmmtSyd+TdO0TkYnfk3TtE5GJ35N07RORid+TdO0TkYnfk3TtE5GJ/5WIiJdRGSNiBSJyAsi8oiILDiB5e0SkUktGKKmNZuIXC0iv9p8LhaRHq207lUicn0LL/NP29PR6MR/AkTksIhMtnPyOUA24K+UuruJ6/lARJ6wHaaUGqCUWtWU5Wjty4meHDiTUspXKZXg7Di0uunE33q6AbtVO3piTgx6H2mnRMTV2TFobZP+p24htZeGIvK8iOSJSKKInG2O+wC4CrjXvAT+y1WCiHwhIkdFpMAsEhpgDp8DXGEz71fm8GNXGyLiISLzRCTNfM0TEQ9z3CQRSRGRu0UkU0TSReSaBrZjlYg8KSK/AaVADxEJEJF3zXlTReQJEXExp+8lIqvNuLNFZKHNspSIzBWRBHPcc7UHEhGxiMi/RSTJjOsjEQkwx8WZ814lIsnmvA/YLHe0iMSLSKGIZIjIizbjxorIOhHJF5E/bIvDzN8owSxuSxSRK+r5Dh4xf48F5rQ7RKSPiPzLjPWIiJxpM32UiCwXkVwROSgiNxy3rM/N7Ssyi+hGHjfvYhHJMmOaaw6fAtwPXGr+7n+Yw68RkT3mshJE5EabZdX+1veJyFHgfRHZKSJTbaZxM7/PoXVsd+3895vTHLb9jsz94CMz1iTz96szh5i/Xy/zvZcYxZtJ5n7yqznsGxG5/bj5tovI9DqW52n+Hjnmb/u7iHSxmaSbiPxmfi8/ikiozbzTzO89X4z9u5/NuK4issTcphwRea2e7XnOjDtAGtjn2w2llH418wUcBiab768GqoAbABfgZiANEHP8B8ATNvM+Aiyw+Xwt4Ad4APOAbTbj/jRvHet+DNgAhANhwDrgcXPcJKDanMYNOAcjoQfVs02rgGRgAOBqzrMU+C/gY65jE3CjOf2nwAMYJxGewASbZSlgJRAMxAL7getttvcg0APwBZYA881xcea8bwNewBCgAuhnjl8PzDbf+wJjzffRQI65jRbgDPNzmBl7IdDXnDYSGFDPd/AIUA6cZX4HHwGJ5na6mb9xos30q4E3zO0fCmQBpx+3rHPM/eJpYIM5zgJsBh4C3M3vIgE4q659xBx2LtATEGCi+VsOP+63fhZjP/IC7gUW2sx/PrCjnu2unf9Fc/6JQInNd/YRsAxjP40zf8/rbPb/X4/77XuZ71/H2K+ize9gvLn8S4CNNvMMMX8v9zpiuxH4CvA2lzECo9gUc9mHgD7mNq8CnjHH9TG34Qzzt7sXY79zN5fzB/ASxv5xbP+t3R7zN3ob+AHwbmyfby8vpwfQnl/8NfEftBnnbe78EebnD2gg8R+33EBz3oC65q1j3YeAc2zGnQUcNt9PAsoAV5vxmZjJso51rwIes/ncBSPpetkMuxxYab7/CHgLiKljWQqYYvP5FmCF+X4FcIvNuL4YB05X/pf4Y2zGbwIuM9+vAR4FQo9b332YBw+bYT9gXG35APnAhbbbUs938Ajwk83nqUAx4GJ+9jPjCwS6AjWAn830TwMf2CzrZ5tx/YEy8/0YIPm4df8LeL+xfcRm+qXAHTa/dSXgaTM+Cijif0lyEXBvPcuahJH4fWyGfQ48iJEkK4D+NuNuBFbZ7P9/SfwYybEMGFLH+jyAXKC3+fl54I16YrsW44RmcD377L+P28++N98/CHxuM84CpJrbOg7jIO1axzKvBjYCC4HF2ByMaGCfby8vXdTTso7WvlFKlZpvfRubSURcROQZETkkIoUYSR0gtIHZbEUBSTafk8xhtXKUUtU2n0sbieuIzftuGGdK6ealcj7G2X+4Of5ejLPPTebl9LUNLMs2rrpidsU40NQ6avPeNubrMM7k9pqX/OfZxHpxbZxmrBOASKVUCXApcJO5Ld+IyEkNfAcZNu/LgGylVI3NZ8x4ooBcpVTRcdsS3cB2eIpR/t4NiDou3vuP+w7+RETOFpENZrFSPsaVhO1+kqWUKq/9oJRKA34DLhSRQOBs4OMGtjvP/K5styXKXIc7f/3NbLezLqEYZ8WHjh+hlKrAOLDMMouMLgfm17Oc+RgH8c/EKM78j4i42Yyvb1/5036mlLJi7JPRGAftpOP+N2z1wrhCelQpVWkzvLF9vs3Tib9tmImxg00GAjDOeMHYucA4e2pIGkYSqRVrDmsu2/UdwTjTC1VKBZovf6XUAACl1FGl1A1KqSiMM8A3ast2TV3riauumKv5c8KtOzilDiilLsc4+DwLLBIRHzPW+TZxBiqlfJRSz5jz/aCUOgOjmGcvxiX8iUoDgkXE77htSbVj3iMYRUa28foppc6p3VTbicW4b7MY48y4i1IqEPiW/+0nf5nH9CEwC7gYWK+Uaii2IPO7tN2WNIwaaVX89TdrbDuzMYq6etYz/kOMe1inA6VKqfV1TaSUqlJKPaqU6o9RVHQecGUj64bj9jMREYx9MhXj+4+V+m+C7wGuAb4Tkb42sTS2z7d5OvG3DX4YyTUHo4joqePGZ2CU/9bnU+DfIhJm3tR6CGiRaoBKqXTgR+AFEfEX46ZsTxGZCCAiF4tIjDl5HkbiqbFZxD0iEiQiXYE7MC6da2O+U0S6i4gvxjYvbODs6xgRmSUiYebZW745uAZjm6eKyFnmVZSnecMyRoznKKaZSa0Co+impp5V2E0pdQSjCOJpc32DMa5IGjqrrrUJKDRvxnqZMQ8UkVHm+AwgzuYGqjtG8UgWUC1G5YEz/7rYv1gKDMf4/j+yY/pHRcRdRP6GkWC/MK92PgeeFBE/EekG3EUj+5n5G70HvCjGjWwXERlnHsQwE70VeIH6z/YRkVNFZJAYlQoKMQ5C9vx+nwPnisjp5hXC3Ri//zqM7z8deEZEfMzf7+Tj4v8U4yrsZxHpacbS2D7f5unE3zZ8hHE5mgrsxrhRa+tdoL9ZHLC0jvmfAOKB7cAOYIs5rKVciZF0dmPs6IswzpoBRgEbRaQYWI5R3pxoM+8yjBuY24BvzG0BIxnMxyivT8Q4K/xTDY8GTAF2met8GaPsv9xMwudj/KNmYZzR3YOxn1sw/unTMMqVJ2KUBbeEyzGu0tKAL4GHlVI/NTaTmUynYtwQTsQ4O34H46oP4Avzb46IbDGLk+ZiJLM8jCvF5XaspwzjSqE7xk30hhw1l52GcfC6SSm11xx3O8aN0gSMG5+fYPyOjfkHxn75O8Z3/yx/zj0fAYNo+CASgbHfFWKcia9uZHoAlFL7MK52XsX4fqcCU5VSlTbffy+MCg0pGMWBxy/jQ4zKEb+ISByN7/NtXm2NE01rcSKiMG7cHXR2LJ2diDwE9FFKzWpgmkkYN5Nj6pvGEUTkSmCOUmpCa663M9MPeGhaByciwRjFT7OdHcvxRMQb48rrDWfH0pnooh5N68DEeJjsCPCdUmqNs+OxJSJnYRTJZWAUG2mtRBf1aJqmdTL6jF/TNK2TaRdl/KGhoSouLs7ZYWiaprUrmzdvzlZKhR0/vF0k/ri4OOLj450dhqZpWrsiIkl1DddFPZqmaZ2MTvyapmmdjE78mqZpnYxO/JqmaZ2MTvyapmmdjE78mqZpnYxO/JqmaZ1Mh078BzdnsnONPf1haJqmdR4dPPFnsP7LQ1SWN9q3h6ZpWqfRoRP/0DNiqSyrZs9v6c4ORdM0rc3o0Ik/onsAkb0C2LYiGWuN1dnhaJqmtQkdOvEDDDsjluLcCg5tyXJ2KJqmaW1Ch0/8cYNCCezizdafktF9D2iapnWCxC8WYejkrmQlF5G2P9/Z4Wiapjldh0/8AH3HRODl58bWn5OdHYqmaZrTdYrE7+ruwqBJMSTtyCE3rcTZ4WiapjmVwxO/iLiIyFYR+dr83F1ENorIARFZKCLujo4BYODEaFzcLGxboc/6NU3r3FrjjP8OYI/N52eBl5RSvYE84LpWiAEvX3f6jYtk38ajlBRUtMYqNU3T2iSHJn4RiQHOBd4xPwtwGrDInORDYLojY7A1ZHJXrDWKHStTWmuVmqZpbY6jz/jnAfcCtU9PhQD5SqnaNhRSgOi6ZhSROSISLyLxWVktUwc/MNybHkPD2LkmVTfjoGlap+WwxC8i5wGZSqnNtoPrmLTOyvVKqbeUUiOVUiPDwv7SSXyzDTsjlorSavau1804aJrWOTnyjP9kYJqIHAY+wyjimQcEioirOU0MkObAGP4iokcAET0C+GPFEd2Mg6ZpnZLDEr9S6l9KqRilVBxwGfCLUuoKYCVwkTnZVcAyR8VQn2FnxFKYXU7CtuzWXrWmaZrTOaMe/33AXSJyEKPM/93WDiBuSCgBYV5s/TFJN+OgaVqn0yqJXym1Sil1nvk+QSk1WinVSyl1sVKq1etWWsxmHDKTikg/WNDaq9c0TXOqTvHkbl36jovE08eNrT/pB7o0TetcOm3id3N3YeCkaA5vzybvqG7GQdO0zqPTJn6AQRNjjGYcfj7i7FA0TdNaTadO/N7+7pw0NoJ9G45SWljp7HA0TdNaRadO/ABDTu9KTY2VHat0Mw6apnUOnT7xB0X40H1wKDtWp1BVWePscDRN0xyu0yd+gKFnxFJRUs3edboZB03TOj6d+IHIngF06e7PthVHsFr1A12apnVsOvEDIsLQybEUZpWR+EfLtASqaZrWVunEb+oxLAz/UE+26Qe6NE3r4HTiN1kswpDTYzmaUEj6Id2Mg6ZpHZdO/Db6jY/Ew8dVn/Vrmtah6cRvw83DhUETY0j4I4v8jFJnh6NpmuYQOvEfZ9CkGCwuwrYVuhkHTdM6Jp34j+Pt785JYyLYuz6dsiLdjIOmaR2PTvx1GDI5lpoqKztWpzo7FE3TtBanE38dgiN9iBsUwvaVR3RZv6ZpHY5O/PUYN6MXIsLSF7fo9vo1TetQdOKvR3CkD9PvHIbVqlj64lad/DVN6zB04m9ASLQv0+8cjgK+fHEruWk6+Wua1v7pxN+I4CgfLrhrGAIsfWkLOanFzg5J0zTthOjEb4egCB+m3zUMi0VY+tJWslOKnB2Spmlas+nEb6egCB+m3z0cVzcLS1/aSlayTv6aprVPOvE3QWC4N9PvGoabuwvL5m0lM6nQ2SFpmqY1mU78TRQQ5s0Fdw/H3dOV5S9vI+OwTv6aprUvOvE3g3+oF9PvHoaHtyvL523laKJuxlnTtPZDJ/5m8g/xYvpdw/H0c2f5y9t0G/6aprUbOvGfAL9gTy64axje/u589co20g7mOzskTdO0RunEf4J8gzy54K7h+AR68NWrf5B2IM/ZIWmapjVIJ/4W4BPowfS7huEXZCT/1H06+Wua1nbpxN9CfAI8mH7XcPxCvPj6tT84sjfX2SFpmqbVSSf+FuTt7870O4cREO7FN69v58hunfw1TWt7dOJvYd7+7px/5zACu3jzzRvbSd6V4+yQNE3T/qTRxC8iF4uIn/n+3yKyRESGOz609svL153pfx9GUKQ33765g6SdOvlrmtZ22HPG/6BSqkhEJgBnAR8Cbzo2rPbP09eN82uT//9t5/CObGeHpGmaBtiX+GvMv+cCbyqllgHujgup4/D0MZJ/SJQv3/3fDhK36+SvaZrz2ZP4U0Xkv8AlwLci4mHnfBq1yX8ooTG+fP/fHSRsy3J2SJqmdXL2JPBLgB+AKUqpfCAYuMehUbUQpRQ1Rc5vPtnD241pfx9GWKwfP7y1k4StOvlrmuY89iT+SOAbpdQBEZkEXAxsamwmEfEUkU0i8oeI7BKRR83h3UVko4gcEJGFIuKwYqOU224n5fa5jlp8k3h4uTJ17lDCuvnxw9s7ObQl09khaZrWSdmT+BcDNSLSC3gX6A58Ysd8FcBpSqkhwFBgioiMBZ4FXlJK9QbygOuaFbkdvIYOoXTDBsr37XfUKprEw8uVaXOHEh7nzw/v7OLgZp38NU1rffYkfqtSqhqYAcxTSt2JcRXQIGWo7aDWzXwp4DRgkTn8Q2B6k6O2U9DFFyOenuQtmO+oVTSZu5crU+cOIaKHPz++u4sD8RnODknTtE7GnsRfJSKXA1cCX5vD3OxZuIi4iMg2IBP4CTgE5JsHEoAUILqeeeeISLyIxGdlNa9M3CUwkIBp0yhY/hXVeW2n/Rx3T1fOu81I/j+9u4v9m446OyRN0zoRexL/NcA44EmlVKKIdAcW2LNwpVSNUmooEAOMBvrVNVk9876llBqplBoZFhZmz+rqFDx7FqqigvzPv2j2MhyhNvlH9grk5/d3s2+jTv6aprWORhO/Umq3UmquUupT83OiUuqZpqzErA20ChgLBIqIqzkqBkhrWshN49G7Nz7jx5H3ySeoqipHrqrJapN/VJ9Afv5gN3s3pDs7JE3TOgGH1ccXkTARCTTfewGTgT3ASuAic7KrgGWOiqFW0OzZVGdkUPTTT45eVZO5ebhw7q1DiOkbxIoP97BnnU7+mqY5liMfxIoEVorIduB34Cel1NfAfcBdInIQCMGoKeRQvhMn4hYbS+58u0qoWp2buwvn3jKYricF8cv8Pez+zaEXQZqmdXIOS/xKqe1KqWFKqcFKqYFKqcfM4QlKqdFKqV5KqYuVUhWOiqGWWCwEz7qCsq1bKdux09GraxZXdxfOuXkwsf2CWTl/L9tXpjg7JE3TOih7WuccKSJfisgWEdkuIjvMs/h2JWDGDCw+PuTO/8jZodTL1d2Fs28eRPchoaxduJ/fFh9EWeu8961pmtZs9pzxfwy8D1wITAXOM/+2Ky6+vgTMmEHhd99Tldl2H5xydXNhyo2DGDQxmm0/JfPju7uorqppfEZN0zQ72ZP4s5RSy83aPEm1L4dH5gDBs66A6mryP1vo7FAaZLEIf7usD+Nn9OLg5kyWv7yN8pK2VSNJ07T2y57E/7CIvCMil4vIjNqXwyNzAPdu3fCdOJG8hQuxVlY6O5wGiQjDzozlzOsHkHG4kMX/2Uxhdpmzw9I0rQOw9wGuocAUjCKe2uKedin4ytnU5ORQ+M23zg7FLr1HduH8O4ZRVlTJov9sJjOp0NkhaZrWzolSDd88FJEdSqlBrRRPnUaOHKni4+NbZFlKKRKmTkXc3em+eDEi0iLLdbTc9BK+fu0PyooqOev6gcQNDnV2SJqmtXEislkpNfL44fac8W8Qkf4OiMkpRITgWbOp2L2Hsi1bnB2O3YIjfbjw3hEERfjw7Zvb2bkm1dkhaZrWTtmT+CcA20RkX3uuzmkr4PxpWAICyP2o7bTaaQ+fAA+m3zWM2IEhrP5kH+u/PKSre2qa1mSujU/CFIdH0cosXl4EXXwROe9/QFVaGm5RUc4OyW7unq6cc9Mg1ny2ny0/JFGUW87pV/bDxU33hqlpmn3saaQtCQjkfzd2A9trdU5bQTNnApD3iT19yrQtFhcLE2f2Zez0Hhz4PYPlr+jqnpqm2c+eJ3fvwHiIK9x8LRCR2x0dmKO5RUXhN3kyeV8swlpa6uxwmkxEGDEljjOu7c/RhAKWPL+Fwhxd3VPTtMbZUz5wHTBGKfWQUuohjKaVb3BsWK0j+MrZWAsKKFj+lbNDabY+oyOYNncoJfkVLP7PZrKSnd+5vKZpbZs9iV8A2zYDasxh7Z7X8OF49u9P7oL5NFattS2L7hvEjHuGY3ERvnxhC4d3ZDs7JE3T2jB7Ev/7wEYReUREHgE20ApNKbcGESHoytlUHjxEybp1zg7nhIRE+XLRfSMJ7OLNN29sJ/7bRF3jR9O0Otlzc/dFjKd3c4E84Bql1DxHB9Za/M85B5eQEPLaWdXOuvgEeHDBP4bTZ3QXNi5P5Lv/7qCirLrxGTVN61QaTPwiYhGRnUqpLUqpV5RSLyultrZWcK3B4u5O0KWXUrx6NZWHDzs7nBPm5u7C5Kv787dLe5O0I4dFz8STm1bi7LA0TWtDGkz8Sikr8IeIxLZSPE4RdPll4OZG7sftr2pnXUSEwad25fw7h1FRVs0Xz8ZzcHPbbYpa07TWZU8ZfySwS0RWiMjy2pejA2tNrmFh+J89hYIlS6gpLnZ2OC0mqncgl94/itBoH354eyfrlhzEWmN1dliapjlZvU/uioiH2S3io60Yj9MEz76SwuVfUbBkCcFXXunscFqMT6AH0+8azq9fHGDrj8lkJRdx5nUD8PJzd3ZomqY5SUNn/OvNv9crpVYf/2qN4FqT16CBeA0bRu6Cj1E1HavHKxdXCxMv78tpV/Yj/WABnz/9u27eWdM6sYYSv7uIXAWMt+2ApT13xNKY4CtnU5WcTPHqNc4OxSH6jY9kxj3DAVjy3Bb2rEtzckSapjlDQ4n/JoyndG3b6Wn3HbE0xG/yZFwjItp0h+wnKrybP5fcP4rIXgH88tFeVn2yj5oqXe6vaZ1JvWX8SqlfgV9FJF4p1SEe2GqMuLkRNHMmWS++SPn+/Xj26ePskBzCy9edqXOHsnHZIbb8kEz2kSKmzBmEb5CHs0PTNK0V2PMAV6dI+rUCL74I8fAgb8HHzg7FoSwWYdwFvZgyZyC5aSV8/tQm0g7kOTssTdNagW7E/TiuQUEETJtKwfLl1OTnOzsch+s5PJyL7huJh7cbS1/axrafk9t1u0WapjVOJ/46BM2ajSovJ++LL5wdSqsIjvLh4n+OJG5QCL8tOsjXr/1BSUGFs8PSNM1B7Er8IhItIuNF5JTal6MDcybPvn3wHjuWvI8/wVrSOZo7cPdy5eybBjHx8j6k7s9n4RObOLxdt/KpaR2RPR2xPAv8BvwbuMd8/cPBcTld2O23UZ2ZSfrDj3Saog8RYeDEGC751yh8Aj345o3trP5kH1WVHeu5Bk3r7Ozpc3c60Nd8irfT8B4xgrC5t5M172W8R40i6NJLnB1SqwmO8uGie0eyYXkC235KJnV/HmdcO4CwWD9nh6ZpWguwp6gnAXBzdCBtUcicOfhMmEDGk09Svnu3s8NpVS5uFk6+sBfT7hhKZVk1i56NZ+uPybqNf03rAKSxYgwRWQwMAVYAx876lVJzHRva/4wcOVLFx8e31ur+pDo3l8QLZiAeHnRfvAgXv8531lteXMXKj/eSsDWL6L5BTL66H75Bns4OS9O0RojIZqXUyOOH23PGvxx4HFgHbLZ5dQquwcFEv/QiVamppP/7wU5T3m/L09eNKXMGcursk8g4XMhnj2/i0BbdzLOmtVf2PMD1IfAp/0v4n5jDOg3v4cMJv+tOin74ocM/2FUfEaH/yVFcev8oAsK8+P6tnfzy0R4qy3UPX5rW3thTq2cScAB4HXgD2N/Rq3PWJfiaa/A99VQy/vMfyrZvd3Y4ThPYxZsZ945gxNnd2LM+nYVP/s7RxAJnh6VpWhPYU8a/GZiplNpnfu4DfKqUGtEK8QHOLeO3VZOfT+KMCwHo/uUSXAICnByRc6UdyOen93dRkl/J6PPiGD4lDotFnB2WpmmmEynjd6tN+gBKqf100lo+LoGBRM97iaqsLNL++a9OWd5vK6p3IJf9ezS9RoSzcXkiS1/YQn5GqbPD0jStEfYk/ngReVdEJpmvt+lEN3eP5zV4MF3uuYfilSvJfe99Z4fjdB7ebpx53QAmX9Of3PQSPnt8E/HfHaZGd/GoaW2WPUU9HsCtwARAgDXAG635QFdbKeqppZQi9Y6/U7RiBd3mf4T38OHODqlNKCmoYO3CAxzakklItA+nzupHl+7+zg5L0zqt+op6Gk38J7DCrsBHQARgBd5SSr0sIsHAQiAOOAxcopRqsD3gtpb4AWqKikiccSGqspLuXy7BNTjY2SG1GQnbsljz2X5KCyoYfGpXRk/rjrunPQ+Ja5rWkppcxi8in5t/d4jI9uNfdqyzGrhbKdUPoyevW0WkP/BPYIVSqjfGQ2H/bM4GOZuLnx/R816iJi+PtHvvQ1l10UatHkPDmPnwGAacEs0fvxzhs8c2kbQrx9lhaZpmqveMX0QilVLpItKtrvFKqaQmrUhkGfCa+ZpkLjsSWKWU6tvQvG3xjL9W3mefcfSRRwn7+x2E3nSTs8Npc9IO5rNqwV7yjpbSZ3QXJlzcGy8/d2eHpWmdQpPP+JVS6ebbW5RSSbYv4JYmrjwOGAZsBLrULtv8G17PPHNEJF5E4rOyspqyulYVeOml+J97LlmvvErJxk3ODqfNieoVyKUPjGbUuXEc3JzJJ49sZN+G9E5fI0rTnMmem7tblFLDjxu2XSk12K4ViPgCq4EnlVJLRCRfKRVoMz5PKRXU0DLa8hk/QE1xCYcvvpia4iJ6LFmCa1iYs0Nqk3LSilm1YC9HEwrp2j+YSTP74h/q5eywNK3Dak4Z/80isgPoe1z5fiJg16OrIuIGLAY+VkotMQdnmEU8mH/bfaMvLr4+RM+bh7WomNR/3IOq0e3X1yUkypcZ/xjBKZf14eihAj59bCPbfk7Gqqt+alqraqge/yfAVIxG2qbavEYopWY1tmAREeBdYI9S6kWbUcuBq8z3VwHLmhF3m+PZtw8RDz5I6caNZL/+hrPDabPEIgyaFMPlD48hpm8Qvy06yOL/bCY7pcjZoWlap2F3dU4RCQeOtcWrlEpuZPoJwFpgB0Z1ToD7Mcr5PwdigWTgYqVUbkPLautFPbbS/nU/BUuX0vXtt/GdcLKzw2nTlFIc3JzJ2oX7KS+pZtCkaEad2x1Pn075YLimtbhm1+MXkanAi0AURrFMN4yz+AGOCLQu7SnxW8vKOHzJJVRn59B90Re4RUc7O6Q2r7ykig1LD7H71zQ8vN0YM607/SdEYXGxq0toTdPqcSJt9TyBUQ9/v1KqO3A6Rh+8Wh0sXl5Ev/wyqrqa5BvmUJ3X4LNpGuDp48akK07ikgdGERLtw+pP97Pwyd85srfBC0FN0z5niIUAACAASURBVJrJnsRfpZTKASwiYlFKrQSGOjiuds2jRw9iXn+NqiNHSLn5FqxlZc4OqV0IjfHj/DuHMWXOQKoqalg+bxvfvrmdgizd8JumtSR7En++WSVzDfCxiLyM8VSu1gCf0aOJeu45yv74g9S7/4Gq1l+ZPUSEnsPDmfnIGMZO78GRvXl88uhG1n95UHf6omktxJ4yfh+gHKOBtiuAAIzqma32DH57KuM/Xu6Cj8l44gkCL7mEiEcfwajspNmrJL+CDUsPsXfDUbz83Rk3vQcnjY1EdLv/mtaoVm+krSW158QPkPniS+S89Raht99G2K23OjucdikjsZBfv9jP0YRCwmL9+NslvYnsFdj4jJrWiTXnAa5fzb9FIlJo8yoSkUJHBtvRhN35dwKmTyf71dfI+/xzZ4fTLnXp7s+Me0ZwxrX9KS2sZMnzW/jxnZ0U5ZY7OzRNa3fqbStXKTXB/OvXeuF0TCJC5OOPUZ2Tw9FHHsU1NBS/005zdljtjojQZ3QE3YeEseXHJLb+mEziH9kMOzOWYWd2w83Dxdkhalq7YE8Z/8vAZ0qp9a0T0l+dSFFPlbUKN0vbeCDIWlJC0tXXUHHgALHvv4f3sGHODqldK8wpY/2XhzgYn4mXvzsjz+7GgAnRuLjp+v+aBif2ANdVwKVAH+BLYKFSqlUL3Jub+B9e9zAFFQXMO3WeA6JqnurcXA5ffjnW/AK6ffoJHj16ODukdi/9UAEblx0idX8+vkEejDq3O33HReCiHwDTOrlmP8CllPpQKXUOMBrYDzwrIgccEGOLi/CJYEXyCnbl7HJ2KMe4BgcT+8474OpK8vXXU5XR7tuoc7rIngGcf+cwpt0xFO8AD1Yu2Munj2xk/6ajWK1tv/KCprW2ppwS9QJOwugyca9Domlhs/vNJsAjgNe3vu7sUP7EvWtXur71X6z5BRyZM4eaIt1A2YkSEbr2C+ai+0Zwzs2DcHV34af3drPwiU0kbM3S7f9rmo1GE7+I1J7hPwbsxGidc6rDI2sBvu6+XD3gatamrmVb5jZnh/MnXgMGEP3qK1QcOkTKrbdhrax0dkgdgojQfUgYlz4wijOvH4C1RvHdf3fwxdPxJO3K0QcATcO+Mv6bgEVKqezWCemvTuTmbmlVKWcvOZs+QX14+8y3WziyE1fw1Vek3XMvfmdPIfqFFxCLLpduSdYaK/s2HuX3rw9TlFtOZK8Axp7fg6jeDfb9o2kdwok00vYWMEVEHjIXFCsio1s6QEfxdvPm2oHXsiF9A/FH295DYAFTpxJ+zz0Uffc9Gc88o89IW5jFxUK/8VFc8dhYTrmsDwVZZXz5wlaWv7KNjMP6cRStc7In8b8OjAMuNz8XmcPajUv7XkqYVxivbXutTSbW4GuvIfiqq8j7aD65773n7HA6JBdXC4MmxTDr8XGMv7AXWUlFLHomnm/f3K47gdE6HXsS/xil1K0Y7fWglMoD3B0aVQvzdPXk+kHXszljMxvSNzg7nL8QEcLvuxf/c84h87nnKVjWITola5Pc3F0YdkYss58cx+ip3Undl8fCJ37nq1f/IO1AXps8MdC0lmZXs8wi4gIoABEJ4389arUbF/W5iAifiDZ71i8WC5HPPI332LGkPfBvilascHZIHZq7pyujzu3O7CfHM2ZaD7KSC/nyha0s/s9mErZloXQ1UK0Dsyfxv4Lx4Fa4iDwJ/Ao85dCoHMDdxZ05g+ewPWs7a1PXOjucOlnc3Yl57VU8+/Uj5fa55H220NkhdXiePm6MPCeO2U+O55TL+lBaWMl3/7eDTx/byJ516dRUt7tzHE1rlF2tc4rISRg9bwmwQim1x9GB2Wqp1jmrrFVM/XIqAR4BfHbuZ222iWRrSQkpd91Fyeo1hN5yM6G3395mY+1orDVWDm7JZMv3yeSkFuMb5MGQ07vSf0IU7p71Nm2laW1Sk5tsEJHghhbYWAfpLaklm2VeenApD/72IPNOncfpsae3yDIdQVVXk/7IIxQsWkzAjBlEPvoI4tY22hzqDJRSJO/KZcsPSaQdyMfD25VBk2IYfGoMXn7t6haX1ok1J/EnYpTrCxAL5JnvA4Fks//dVtGSib/aWs30ZdNxd3Fn0dRFWKTt1ptXSpH92utkv/46Pn/7GzHzXsLi4+PssDqdowkFbPkhicQ/snF1s9BvQhRDJ3fFP8TL2aFpWoOaXI9fKdVdKdUD+AGYqpQKVUqFAOcBSxwXqmO5Wly5achNHMg7wI9JPzo7nAaJCGG330bE449Rsm4dSVdeRXW2056j67QiegRwzs2DufzhMfQa1YVda1JZ8OAGfnp/F9kpxc4OT9OazJ4ndzcrpUYcNyy+rqOIo7R0D1w11houXH4hCsWSaUtwsbT9dtyLVq0i9c67cA0Joevbb+HRvdUuuLTjFOeVs23FEXatTaO6ooao3oEMmhRD96GhukVQrU05kSd3s0Xk3yISJyLdROQBoNX623UEF4sLNw+9mYSCBL5N/NbZ4djFb9Ikun30IdbSUpIun0nZtrbV9lBn4hvkyYSLenPVU+MZN6MnRbnl/PD2TuY/sJ7fv0mkpKDC2SFqWoPsOeMPBh4GTsEo818DPNZeb+7WsiorF391MeXV5SybvgxXS/uosVGZlETyDXOozswk+sUXdE9ebYDVqkjamcPOVSkk787F4iL0HB7OoEkxRPTw1zWyNKfRna3X4ZfkX7hj5R08Nv4xLuh9QYsv31Gqc3I4ctPNlO/aRcRDDxJ02WXODkkz5WeUsmN1CnvXpVNZXkNoV18GTYqhz6guuLq3/SJFrWPRib8OSiku/+Zy8srz+PqCr3FzaT/VJa2lpaTeeRfFq1cTctONhN1xhz6zbEMqy6vZvymDHatSyE0rwcPblX4nRzHwlGgCwnRtIK116MRfj7Upa7llxS08OPZBLul7iUPW4Siqupqjjz5G/hdfEDB9OpGPP6br+rcxSinSDuSzY1Wq0RSEUnQbGMKgSTHE9gtGLPpgrTmOTvz1UEox+7vZpJek8+2Mb/Fw8XDIehxFKUX2G2+Q/epr+EyYQPS8ebj46rr+bVFxXgW71qay69c0ygorCQjz4qTxkZw0NgLfIE9nh6d1QM2u1SMiPUTkKxHJFpFMEVkmIh2mh3AR4bZht5FZmsmi/YucHU6TiQhht95K5JNPULJ+PclXXkl1Vpazw9Lq4BvkwZhpPbjqqfGccV1/vAPc2bgsgY/uX8dXr2zjQHwG1VU1zg5T6wTsqdWzAaP9/U/NQZcBtyulxjg4tmMcecYPxlnztT9cS2JBIt9d+B1eru2zDLZ4zRpS7vg7Fl8fop5+Bt8JJzs7JK0R+Zml7F2fzr4NRynOq8DD25Xeo7rQb3wkYbF++r6NdkKaXdQjIhuPT/IiskEpNbaFY6yXoxM/wOaMzVz9/dXcPeJurh54tUPX5Ujl+/aT9o+7qThwkOCrriTsrruweLSv4qvOyGpVpOzNZe+6dBK2ZVNTbSU4yod+4yPpMzoCb3/dPpDWdCeS+J8B8oHPMOrxXwp4YPbC1Rr1+Vsj8QPM+XEOe3P38t2F3+Hj1n7Lya3l5WQ+9zx5H3+MR9++RD//HB69ezs7LM1O5SVVHNycyZ516WQeLsRiEboNCuGkcZF0GxSinw7W7HYiiT+xgdHKbM/HoVor8W/P2s4V317BHcPv4PpB1zt8fY5WvHo1afc/gLW4mPB77yFo5kxddNDO5KQVs3f9UfZtPEpZYSVefm70GRNBv3GRhET7Ojs8rY3TtXrsdOuKW9mWuY3vL/weP3e/VlmnI1VnZ5N2//2UrFmL78SJRD71JK4hIc4OS2uimhorybuMoqDD27OxWhUhMb70HhlOrxFd9LMBWp1O5IzfE7gFmIBR1LMW+D+lVLkjAq1Layb+3Tm7ufTrS7llyC3cPPTmVlmnoymlyJu/gMznn8fi70/U00/h+7e/OTssrZnKiirZvymDg5szOJpQCEB4Nz96jexCrxHh+AXrqqGa4UQS/+dAEbDAHHQ5EKSUurjFo6xHayZ+gL+v/Dsb0zfy/YXfE+AR0GrrdTTjxu8/qDhwgKArZxN+9936xm87V5hTxsHNmRyMzyQruQiAyJ4B9BoZTs/h4fgE6N+3MzuRxP+HUmpIY8PqmO89jLb7M5VSA81hwcBCIA44DFyilMprLPhmJ/5dS6EkC0bf0KTZ9uft56LlF3H9oOuZO3xu09fbhlnLy8l84UXy5s/Ho08fop5/Ds8+fZwdltYC8jNLORifycHNGeSkliACUX0C6TWiCz2Hh+Hlq2sGdTYn0izzVhE5VnVTRMYAv9kx3wfAlOOG/ROjz97ewArzs+PsWgI/PAA5h5o0W5+gPpwVdxYL9ixgf95+BwXnHBZPTyIeuJ+ub/2X6pwcDl90MbkLPqY93OvRGhYY7s3Ic+K47MExXP7QGEacE0dJfiWrP9nH+/f+xlevbGPPunQqSqucHarmZA11vbgDo0zfDegLJJufuwG7a8/iG1y4SBzwtc0Z/z5gklIqXUQigVVKqb6NLafZZ/xFR+G10RA5GK76CppQoyWzNJPLv74cV4srn5z7CSFeHe+GaHVOjnHjd/UafCaeQtSTT+IaGurssLQWpJQiO6X42JVAYXY5Fleh60nBdB8SStzgUF0c1IE1p8/dbg0tUCmVZMdK4/hz4s9XSgXajM9TSgU1tpwTKuOPfw++vhPOfwOGXdGkWXfl7OLq766mb3Bf3j3r3XbXjo89lFLkffIJmf95DouvL5GPP47faac6OyzNAZRSZB4u4sDmDBK3ZVGYbdTPCI/zp/vgULoPCSU4ykdX+e1AnFKd80QSv4jMAeYAxMbGjkhKavQ4UzerFT44B7L2wq2/g29Yk2b/8fCP3L36bs7rcR5PTXiqw/5TVBw4QOrd/6Bi/358Jp5Cl/v+iUcP3b1jR6WUIjethMTt2ST+kU3mYaN2kH+oJ90Hh9F9SCiRvQKw6IfF2rW2kvhbt6inVtY+ePNkGHABXPh2k2f/7x//5bVtrzF32FxuGNy0G8XtiaqsJHfBx2S/8QbW8nKCr5hJ6C234BLQcWo2aXUrya/g8A7jIJCyN4+aaise3q50GxRC98FhxA4Ixt2zffRSp/1PW0n8zwE5SqlnROSfQLBS6t7GltMi1TlXPg2rn4FZi6HX5CbNqpTiX7/+i28SvuHFSS9yRrczTiyWNq46J4esl18hf9EiXPz9CZ17O0GXXIK46n/8zqCyvJoju3NJ3J7N4R3ZVJRUY3EVYvoG0X1IGHGDQnQz0u1Eqyd+EfkUmASEAhkY/fYuBT4HYjFuFl9sT1s/LZL4qyuMs/6aCrhlA7g3rS2eipoKrv3hWvbn7ufDsz+kf0j/E4unHSjfu5eMp56mdNMmPHr3psu//onP+PHODktrRdYaK+mHCo4VCRVmlQEQHOVD1/7BxPYLJqp3oO5Wso3STTYAHP7NKO8ffzuc+USTZ88uy2bmNzOpsdbw6XmfEu4dfuIxtXFKKYp+/pnM/zxH1ZEj+J52Gl3uvQf3uDhnh6a1MqUUueklJO/MJXl3DmkH87FWK1zcLET1DiS2fzBd+wcTHKlvELcVOvHXWj4Xts6HG1ZC1NAmz74vdx9XfnclcQFxfDDlg3bbdn9TWSsryfvoI7Lf/D+slZUEz5pF6C034+LX/tsz0pqnqrKGtP35JO/O4cjuXPKOlgJGhzNd+xkHga79gvH00d2BOotO/LXK8oy6/f5RcP0KcGl6ufWqI6uY+8tcJnebzPMTn8cinafmQ3VWFpkvv0zB4iW4BAURNncugRdfhLjoS/3Orii3nORdxkHgyN48KsuqETGqi3btH0xs/xC6xPnpmkKtSCd+WzuXwKJr4KynYNytzVrEBzs/4IXNL3Dj4Bu5bdhtLRdbO1G2axcZTz9NWfxmPPr2pcu//oXP2FbrlE1r46w1VjKTikjelUPy7lwyDxeiFLh7uhDVO5CoPkFE9wkktKsfFt3hvMPoxG9LKfj0MkhcY9zoDWrwWbV6FqF4eN3DfHnwS5752zOc2+PclouvnVBKUfTDj2Q+9xxVqan4Tj6d0JtuxmvgAGeHprUx5SVVpOzN48jeXNL255OfYRQLHTsQ9A4ium8goTG++oqgBenEf7z8I/D6GOg2Hq74oknNOdSqqqnihp9uYEfWDt6b8h5Dwhpst67DslZUkPv+B+S88w7W4mK8x40l5Nrr8Jlwsr7Jp9WppKCCtP35pO7PI/W4A0Fk70Ci9YGgRejEX5cNb8L3/4QL34VBFzVrEXnlecz8ZiZl1WV8eu6nRPpGtnCQ7UdNcTH5Cz8n98MPqc7MxOOkkwi57jr8p5yFuOkbfFr9bA8EaQfyj90orj0QRPUOJLpPEKFdfXXXk03QKRP/74dzySqq4JxB9SRjaw28czoUpMCtm8A7uFnxJeQncMW3VxDlG8X8s+fj7ebdrOV0FKqykoKvvyHn3XepPHQIt6gogq++isALL8Ti0377MtZaT0lBBWkH8kndn0/a/rxjBwJXNwvhcf5E9Aggoofx18tPNzddn06X+JVSzH53E/FJuSy7dQJ9I+qpdpi+Hd6aBENnwvmvNTvG31J/45YVt3BKzCnMmzQPF4uu5aKsVopXrybn3Xcpi9+MJSCAoJmXEzxrlu7+UWuS2gNBRkIh6QkFZCcXYbUauSsgzIuIngHmwSCA4CgffcPY1OkSP0BmUTnnvvIrfh6uLLvtZPw86ylu+Okh+O1luOpr6N78Lgk/2fMJT296mmsGXMNdI+9q9nI6otKtW8l97z2Kfl6BuLsTcMF0Qq65BvduTb+xrmnVlTVkJhdx9FABRxOMV1mR0c+Am6cLXWqvCnoGENHdHw/vzlnU2CkTP8DGhBxmvrORKQMieG3msLpvNlaWwpvjwOIKN/0Gbs1vh+SJDU+wcN9CHhv/GBf0vqDZy+moKhISyX3/PQqWLkNVV+N35pmEXH8dXoMGOTs0rR1TSlGYXcbRhELjYJBYQE5KMbXpLSjShy5xfoR38yesmx+h0b6dopmJTpv4Af5v9SGe+W4vD53Xn2sn1NPU8KFfYP4FcMq9cNoDzV5XlbWKW36+hfiMeO4fcz8X9b5I12ypQ1VmJnkLPibv00+xFhXhPXo0gZdegt/pp2Px1A2AaSeusryazMOF5hVBIZlJhceuCiwWISjKh/BuxsEgvJsfIVG+uLh1rBvHnTrxK6WYM38zK/dmsvDGsYzoVs9N3CU3ws7FcNNaCO/X7PUVVhZy96q72ZC+gcmxk3lk/CMdqtP2llRTXEL+F1+QO/8jqtPSsfj54T9lCgEXTMdrWD1XaJrWDEopivMqyEoqIjOpkMxk429FSTUAFhchJNqXsG5+hMcaB4TgaJ92XYuoUyd+gIKyKqa99isVVVa+njuBUN86etMqyYbXRkFob7jme7A0/we3Kisf7PqAV7e8SohXCM/87RlGRvzl+9dMymqldONGCpYupfDHn1BlZbh1iyXg/PMJPP983KKjnR2i1gEppSjKKSczqYis5EIyk4rITCqissw4GLi4WgiJ8SWsqy+hMb6ExPgREu3Tbvom6PSJH2BXWgEz3ljHyLggPrp2DC513fnf9iksvQnOfQFGXX/C69yZvZN719xLanEqNwy6gZuG3ISrpX3sNM5SU1xC0Y8/UrB0KaWbNgHgPXo0AdOn43/WmbpKqOZQtfcLag8CWUmFZKcUU1FafWwa/1BPQmP8CIkxDwjRvviHera5K1Sd+E2f/36Eexdv5/bTenH3mXV0/qUUfHQ+pG2FWzcajbmdoJKqEp7a+BTLDy1naNhQnjnlGaJ99RmsPSpTUilYvoyCZcuoSkpGvLzwP/MMAqZPx3vMGOQErso0zV61xUTZKcXkpBSRnVJCTmox+ZmlYKZQN08XQqN9/3QwCIn2xc3DeTeRdeK3cc8Xf/DF5hTev2YUp/ato039nEPw5njoeTpcuuCEinxsfZPwDY9veBwLFh4a/xBT4qa0yHI7A6UUZVu3UvDlUgq/+w5rcTGukZEETJtGwPTz8eiu+wfWWl9VRQ05acXkpBiv7FTjb2V5jTGBQECoF0GRPgRH+hAc6U1QpA9BkT64tUKtIp34bZRX1XDBG+tILyjj69snEBNUx5O2616FH/8Ngy6B818H15Z5OvBI0RHuW3MfO7J3cEGvC/jn6H92+id9m8paXk7RihUULF1GyW+/gdWKx0kn4XvqJPxOPRXPgQP1lYDmNLX3DbJTislJNV55R0vJzyjFWmPmWwH/EE/jgBDhc+zAEBTp3aL3D3TiP87h7BKmvvor3cN8+OKmcXi4Hnf0VQrWvgC/PA49T4NLPgKPlul0pMpaxRvb3uDdHe/Szb8bz57ybKfoytERqjIzKfz6G4p+WUHZlq1gteISGorvxFPwnTQJ3/Hj9T0BrU2oqbFSmFVGbloJuekl5KWXkJteSl5GCdbq/+Vh3yAP8yBgHAx6DA3D07d5D6DpxF+HH3Yd5cb5m5k1NpYnptfzANHWBUavXRGD4IpF4BvWYuvfmL6R+9feT25FLncOv5NZ/Wd1qk5dWlpNfj7Fa9dSvHIVxWvXYi0qQtzc8B4zxrgamDRJ1w7S2hxrjZXC7HLjYHC09qBQSl56CdVVVq54bCyB4c0rFdCJvx5PfbuHt9YkMO/SoUwfVk9S2Pc9fHE1+EfCrCUQ3HLlyXnleTy07iFWHVnFydEn88TJTxDqFdpiy++sVFUVpZu3ULxqFcUrV1KZlASAR58++J56Kr6TJuI1eLDuOUxrs5RVUZhTjl+IZ7PbHtKJvx7VNVZmvr2RHakFLLvtZPp0qac458gm+OQSsLjBrEUQ2XJt7yulWLhvIc/HP4+vmy9PTniSk6NPbrHla1CRmGhcCaxcSemWLVBTg0twML6nnILP3ybgPXIUbl3quNGvae2YTvwNyCws55xXfsXfy5Xlt03A16OemytZ+2D+DCgvgMsWQI9JLRrHgbwD3LvmXg7mH+SMbmcwu/9shoYNbXN1g9u7moICitf+alwNrF2LtaAAALfYWLxHjjRfI3Dr2lV/91q7phN/I9YfyuGKdzZw9qBIXru8gaYCCtNgwYWQfQAu+L9md+BSn/Lqct7a/haf7fuMosoiBoYM5MoBVzK522TcLJ2zhUFHUtXVlO/ZS2l8PKXx8ZTFx1NjHghcw8ONg8CokXiNGIFHr166tpDWrujEb4c3Vh3kP9/v4+Gp/bnm5AbK8cvy4NOZkLwOpjwDY29u8VhKq0pZfmg5C/YsIKkwiS7eXZjZbyYX9r5Qt/vjQMpqpfLQIfNAsJnS+HiqMzIAcAkIwMvmisCzXz/EVT+FrbVdOvHbwWpVzJkfz6p9WSy8cRwjugXVP3FVGSy+HvZ+DSf/HSY/0qx+exuNSVlZm7KW+bvns/HoRrxcvTi/5/nM6j+Lbv66LXtHU0pRlZJiHgR+pzQ+nqqkZAAs3t54DhmM14ABePbvj2f//rjFxuqrAq3N0InfTgWlVZz32lqqaxRf3z6BkLoac6tlrYFv7obN78OQmTDtFXBxXHHMvtx9zN89n28Tv6XaWs3EmInM7j+bURGjdFl0K6rKzKRs82ZKf4+nbNs2Kg4cQFWZzf36+ODR76RjBwLP/v3x6NFDXxloTqETfxPsTC1gxpvrGBEbxJuzhhPo3cBTu0rB6mdh1dPQ+0y4+ANwd+wDQ9ll2Szct5DP931ObnkufYP6Mrv/bM7ufjbuLrr/0damKiupOHSI8t27Kd+12/i7bx+qrAwA8fDA46S+xoGgXz88+w/Ao09vLO76t9IcSyf+Jlq8OYV7F28n2MedJ6cP5MwBEQ3PEP+ecfYfNRxmfg4+ju9TtqKmgm8SvmH+7vkczD9IiGcIl510GdN7TSfCp5F4NYdSNTVUHj7854PBnj1Yi4qMCVxd8ejVC4+ePXHv0R2PHj1w79ET97huWDwauMrUtCbQib8ZdqYWcM+i7exJL2TqkCgenTaAYJ8GztL2fA2LroXAWJi1GIJapwxeKcX69PXM3z2fX1N/BaBnQE/GRY1jXNQ4RnYZqdsDagNq7xccOxDs3UPloQSq0tI41kegCG4xMeaBoIfNQaEHrkEN3HPStDroxN9MldVW3lx1iNdWHsDf043Hpw/knEGR9c+QtB4+vRRcPWHMjTDwQgiKa7V4EwsSWX1kNevT17M5YzMVNRW4WlwZFj6McZHjGB81npOCT8LFop9YbSusZWVUJiVRmZBAxaEEKhMTqEhIpDIxEVVRcWw6l6Ag3Hv0wKNHd9y798A9tituMTG4RUfj4tcy7UhpHYtO/Cdo79FC7vliOztSCzhnUASPnT+w7l68ADJ2w9d/hyMbjc/RI436/v2nG80+tJLy6nK2Zm5lfdp61qevZ2/uXgACPAIYGzmWcZHGFUGU74n3OaC1PFVTQ1V6unFASEig8lACFYkJVCYkUpOb+6dpLQEBuEdH4xYdbRwMYoz37uaBweLl5aSt0JxJJ/4WUF1j5b9rEnj55wP4eLjwyLQBTBsSVX+Nmrwk2LUEdiyGjB2AQNwE4yqg//ngXU/fvw6SXZbNxvSNrEtbx4a0DWSWZQIQ5x/H2MixjI8az4iIEfi7+7dqXFrT1eTnU3kkharUVKpSU6hMMd+npFKVmvqnKwUAl5AQ3GKizYNDDK6REbh16YJreDiu4V1wDQnWNY86IJ34W9CBjCLuWbSdbUfyOaN/F56cPpBwf8+GZ8raZ3TkvmMR5B4Ci6vR3PPAi+Ckc1qsyWd7KaU4lH+I9enrWZe2js0ZmymrNmqhdPHuQq/AXvQM7EmvwF7H3uv7BO2DUoqa7GzzYJBGVUoKVanGgaEyJZWq9HQwq58eY7HgGhKCa+3BoEs4buHh/zswhIfjGh6GS2CgrjrcjujE38JqrIr3fk3k+R/34eFq4aGpcKYxmQAAEQ5JREFUA7hweHTj/xRKwdHtxgFg5xIoTDHuB/Q5y7gS6H0muLX+ZXllTSXbMrexPXs7h/IPcTD/IIkFiVTU/O/MMcon6tjBoGdgT3oF9aJHQA+8XHUxQnuiamqoyc2lKiOT6sxMqjMzqM7MpCozk+pjwzKpycv7y7zi7o5raCguISG4BAfhGmz7NxjX4CBcgkOMvyEhWDwbOSHSHEonfgdJyCrmvsXb+f1wHqf2DeOpGYOIDLAzEVqtkLLJuBLY9SWUZIG7n3EF0HU0hPSG0N7gF+mQp4IbU2OtIaU4hYP5B48dDA7mH+RwwWGqrMYZoyBE+0bTK7AX3QO7E+EdQRfvLoR7h9PFpwshniH6RnI79f/tnX2spFddxz/f55nX+zZ7dyvd0oK4pRKUBCgVCwohQWpBBTGoGEViTQgBEiGBgGkk6D/yponyovImaACrVrRCEVAwEEMBqaUUC3QL21Jpd+ne7czeO3fuzPOcn3+cM3Ofe3fm7r3bOzPszvkkT845v/P2m/Oc53eeOc/znOO6XbITPxgMDNmJE/SOHyd/8EGylVPkJ0+SnfKudbtDy9DcHKWDB8OgcJB0eZm00SBtLJE0GqRLjUE4XerLluJy2ftENPxjxDnjQ188xlv/7VuUEnH9LzyeX/+pPa7smGdw7At+ELjzX6Hz0GZcZQEOXQ6HHrs5GBx6rD+qC/v+e85G5jLuPX3vYDC4+6G7OXrqKPecvofMZVvSpko5VD/ExXMXDwaE/nF4/vDAH/81nL+YGW6tTb5yknxlhWxlxbsnV7aGT62Qr5wib7WwdnvHMpPFRdKlJdJGg6Sx5AeIpSUvX1wgmV8gWVggWZgnXVggWVwMMh9WvR6npIiGfyLcc3KN1994O7d8Z4WrjxzkaUcu4nCjysVLNQ43ahxeqtGol8/eIZ2D0/fDybv8KqAnjwb3Lnjoe0DhnC1e4geAi67YHBSWHgn1ZX9McNrImWOls8KJ9gmOrx33bnure6J9gtXe6hl5FyuLLFeXWaos0ag2WKossVTd9DeqDRqVhpdVGl5eXaKaxo+dzkes2yVvtcibTfJmi7z5EG5LuEneapI3m7hBuIVbXT3jwfVQ0pRkYYF0fj4MEAsk8/Mk9TrJ3Fw46mhujqQ+t0XW96teJ5mbJ5mfI6nVULV63q3DFA3/hHDO+MiX7+Wdnz3KA63OGfHVUsLhRs0PBmFA2PT7QeIRizUqpREdrLcOK98dPih0mmemT6ubg0B9GeoHtvpr28LVBpRrUKpvuvvc2dd6a1sGgv5A0ew2aW20aHVbNDeaNLtNTndP48yNLKuW1liqLDFfmWeuNEe9VGeuPLcrf71UZ640R61Uo5JWqKZVqml14I/bYP5wYt0u+doabnV1cOSrq7jVNdzaKvnp097fj1tbxZ1exbXbuPU2rt3G1tq49fWRU1SjULWKajU/ENSqJLX6GW5Sq6K+W62R1GuoUkGVKqpWSKpVX06liioVkmrFh6v9sHcHsvIubhZH6fvDZPglXQv8GZAC7zOzN++U/nwy/EW6mePE6Q7HWx0eaG7wQKvv7/BAwe1mZxq2ejmlVk68W0mplVLqlXQgr5X7fi+vlRIO0OLi7vdYzE5Sz1vUei1qWYtq1qLSa1Lptij3mpS7/kiznf9u97G0gpVq/iF0cUAo11C5jsp1H1eu+7eV0jKklV36y5CWNuVKIUm9P0lxSlh1XVp5h2bWoZmv08o6tLJVWtk6zd4azd4q7bxDO+sEd531vEO7t8561qadrZNbvufzV0pKZwwGlbRCNfFurVSjklQop2VKKlFOy5STMqWkRDnZ5h8RV0pKpEpJk5RyUh74U20Nl5ISJZUGcf18iZIteRIlW/yRnbFeD7e+7o81PzBYux0GiSBrt3GddWy9g9voYJ0NH+5s4DodrNPZ0SXfe98rcuQTH6d6+eXnlHeU4Z/4i7uSUuBdwHOA+4CvSLrJzP530rqMm0op4bLlOS5bHv0apJnxULvnB4JWh+PNDsdbG6x1M9a7OZ1eznovp9NzA/+pdtfLujmdzLHe9XJPFXhkOHamTEaDNRpapcEaB7TKIm1q6lGju3lkXWobXap0t8W1qOlBavSoyctK5JTJKZNRUkaJnBKj79jPRgIsheOycyzDgA3EWlJiLUlppylrSmknKWtJQkdiI0npSnSU0BVsKKGb9OiSsZG0g0x0BV2JLnBK0BVkQCYLrg/3ZORAD8NNcao5QaTIuxIJiQ9LiBDu+yVSkoE/IfEy9WWJj5cvL1EySCeFcEEuNuOTpF9egpQM0g7ybSmrEFYxjw8LkSTJlnqFUKFsFXSWNCKcDMIU6tZcguZVKKeG5J8Z9MtgS5lpKKNYRwLh9yl3JJlD3RxlmXe7GeplIZyhbs+Hg59uD3o9tNEjP7D/r3pP44uNpwJHzew7AJL+DngBcMEZ/t0gieX5CsvzFR5/ybl/OGVmbGR+cOjmjiw3cmf0ckfujMwZWW5kzg38uTN6zpEX5HnhcGbkDnLny1g3WHNGbiE++N1ABq4QNiOky5HrQd5DLkOuF44MWY8kz5DrgjkSl4PlyHJkmT+cK4QdsozEHLicxDJkOQn9NI6EPKRzCIfcpixxzl+I5CTmEDkyQxh1cubMSHChvJAfI8WR0I/rh0M68HFyg/gEQ8EPDsPIZTh51+RwOJzABbkTGMGPkYdwLrAwkFgYYHwaYTJcCJsgRzgg7/sFWXBzwCFyEfIoyDb9BuSSd4PchTRen5BHPm0Pn9b1ywz19+NdiPd1qiAvxBdk/fBmvNehmMcu9Ie2wt+/VYEFeO99V3H1oefuaxXTMPyXAt8rhO8Dfnp7IkkvA14G8OhHP3oymp3HSKIWpn4i+4+FgcyZ4YILfmCzEO8MGKTxcmcWZGzKnM/rCmXaljq8wR/Emf/8w/B1DOqikH5QtgMzzLzrXO5fBXA5OIfhsNyF8h2YwwxkudfVefNqRdf8MGCur4gLecFwm3kMsNzXjy/TBsqHAbA/tezCMBPKkHM+Dxby+Hq3hOmX4/WyUJ6Z92OGo6/LpszM4cJA7Pq/O5Rr/fLJwzp5Nih3UI58OkJ63x9c+D39PP24vh6DjuP1GMQPSthsi35uFevotw0cPnhkP7rwFqZh+IcN12c8aDCz9wDvAT/HP26lIpGd8NMDfuokEjnfmcbTn/uARxXClwHfn4IekUgkMpNMw/B/BbhC0o9JqgAvBm6agh6RSCQyk0x8qsfMMkmvAj6Ff53zA2b2jUnrEYlEIrPKVNZhNbObgZunUXckEonMOvELj0gkEpkxouGPRCKRGSMa/kgkEpkxouGPRCKRGeO8WJ1T0g+Ae84x+0XAg/uozn4R9dobUa+9EfXaGxeqXj9qZj+yXXheGP6Hg6T/HrY63bSJeu2NqNfeiHrtjVnTK071RCKRyIwRDX8kEonMGLNg+N8zbQVGEPXaG1GvvRH12hszpdcFP8cfiUQika3Mwh1/JBKJRApEwx+JRCIzxgVj+CVdK+lbko5KesOQ+KqkG0L8lyQ9ZgI6PUrS5yTdKekbkn5vSJpnSWpKui0cbxy3XqHeY5K+Huo8Yyd7ef48tNftkq6cgE6PK7TDbZJakl69Lc1E2kvSBySdkHRHQXZQ0mck3RXc5RF5XxrS3CXppRPQ622SvhnO08ckHRiRd8dzPga93iTp/wrn6nkj8u547Y5BrxsKOh2TdNuIvONsr6G2YWJ9zG9ddn4f+OWd7waOABXga8BPbEvzCuAvg//FwA0T0OsS4MrgXwS+PUSvZwEfn0KbHQMu2iH+ecAn8TumXQ18aQrn9AH8BygTby/gmcCVwB0F2VuBNwT/G4C3DMl3EPhOcJeDf3nMel0DlIL/LcP02s05H4NebwJeu4vzvOO1u996bYv/E+CNU2ivobZhUn3sQrnjH2zgbmZdoL+Be5EXAB8K/n8Eni2Nd9dmM7vfzG4N/tPAnfg9h88HXgD8jXluAQ5IumSC9T8buNvMzvWL7YeFmX0eWNkmLvahDwG/PCTrzwOfMbMVMzsFfAa4dpx6mdmnzSwLwVvwu9pNlBHttRt2c+2ORa9w/f8a8NH9qm+37GAbJtLHLhTDP2wD9+0GdpAmXCRN4NBEtAPC1NKTgS8NiX6apK9J+qSkn5yQSgZ8WtJX5Te2385u2nScvJjRF+Q02gvgYjO7H/yFCzxiSJppt9t1+H9qwzjbOR8HrwpTUB8YMW0xzfZ6BnDczO4aET+R9tpmGybSxy4Uw7+bDdx3tcn7OJC0ANwIvNrMWtuib8VPZzwReAfwz5PQCfgZM7sSeC7wSknP3BY/zfaqAM8H/mFI9LTaa7dMs92uBzLgwyOSnO2c7zd/AVwOPAm4Hz+tsp2ptRfwG+x8tz/29jqLbRiZbYhsT212oRj+3WzgPkgjqQQ0OLe/pntCUhl/Yj9sZv+0Pd7MWma2Gvw3A2VJF41bLzP7fnBPAB/D/+Uusps2HRfPBW41s+PbI6bVXoHj/emu4J4YkmYq7RYe8P0i8JsWJoK3s4tzvq+Y2XEzy83MAe8dUd+02qsE/Apww6g0426vEbZhIn3sQjH8u9nA/Sag//T7RcBnR10g+0WYQ3w/cKeZ/emINIf7zxokPRV/Tk6OWa95SYt9P/7h4B3bkt0E/LY8VwPN/l/QCTDyTmwa7VWg2IdeCvzLkDSfAq6RtBymNq4JsrEh6Vrg9cDzzaw9Is1uzvl+61V8JvTCEfXt5todBz8HfNPM7hsWOe722sE2TKaPjeOJ9TQO/Fso38a/IXB9kP0R/mIAqOGnDo4CXwaOTECnn8X/BbsduC0czwNeDrw8pHkV8A382wy3AE+fgF5HQn1fC3X326uol4B3hfb8OnDVhM7jHN6QNwqyibcXfuC5H+jh77B+F/9M6D+Au4J7MKS9CnhfIe91oZ8dBX5nAnodxc/59vtY/+21RwI373TOx6zX34a+czveoF2yXa8QPuPaHadeQf7Bfp8qpJ1ke42yDRPpY3HJhkgkEpkxLpSpnkgkEonskmj4I5FIZMaIhj8SiURmjGj4I5FIZMaIhj8SiURmjGj4I5F9QNIBSa+Yth6RyG6Ihj8SeZhISoED+BVg95JPkuI1GJk4sdNFZg5J14f13/9d0kclvVbSf0q6KsRfJOlY8D9G0hck3RqOpwf5s8J66h/Bf6T0ZuDysHb720Ka10n6Slik7A8L5d0p6d34dYceJemDku6QX/v9NZNvkcisUZq2ApHIJJH0FPyyAE/G9/9bga/ukOUE8Bwz60i6Av8l6FUh7qnAE8zsu2GFxSeY2ZNCPdcAV4Q0Am4Ki3zdCzwO/7XlK4I+l5rZE0K+oZuoRCL7STT8kVnjGcDHLKxpI+ls68KUgXdKehKQAz9eiPuymX13RL5rwvE/IbyAHwjuBe4xv8cB+E00jkh6B/AJ4NN7/D2RyJ6Jhj8yiwxbpyRjc+qzVpC/BjgOPDHEdwpxazvUIeCPzeyvtgj9P4NBPjM7JemJ+M01XonfGOS63fyISORciXP8kVnj88ALJdXD6ou/FOTHgKcE/4sK6RvA/eaXFn4JfqvAYZzGb6HX51PAdWG9dSRdKumMTTXCktKJmd0I/AF+m8BIZKzEO/7ITGFmt0q6Ab8a4j3AF0LU24G/l/QS4LOFLO8GbpT0q8DnGHGXb2YnJf2X/KbenzSz10l6PPDFsIr0KvBb+OmiIpcCf114u+f3H/aPjETOQlydMzLTSHoTsGpmb5+2LpHIpIhTPZFIJDJjxDv+SCQSmTHiHX8kEonMGNHwRyKRyIwRDX8kEonMGNHwRyKRyIwRDX8kEonMGP8PpwLCSGcsPz0AAAAASUVORK5CYII=\n",
"text/plain": [
"