-
Notifications
You must be signed in to change notification settings - Fork 86
/
screw_maker.py
765 lines (694 loc) · 30.1 KB
/
screw_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# screw_maker2_0.py
#
"""
Macro to generate screws with FreeCAD.
Version 1.4 from 1st of September 2013
Version 1.5 from 23rd of December 2013
Corrected hex-heads above M12 not done.
Version 1.6 from 15th of March 2014
Added PySide support
Version 1.7 from April 2014
fixed bool type error. (int is not anymore accepted at linux)
fixed starting point of real thread at some screw types.
Version 1.8 from July 2014
first approach for a faster real thread
Version 1.9 / 2.0 July 2015
new calculation of starting point of thread
shell-based approach for screw generation
added:
ISO 14582 Hexalobular socket countersunk head screws, high head
ISO 14584 Hexalobular socket raised countersunk head screws
ISO 7380-2 Hexagon socket button head screws with collar
DIN 967 Cross recessed pan head screws with collar
ISO 4032 Hexagon nuts, Style 1
ISO 4033 Hexagon nuts, Style 2
ISO 4035 Hexagon thin nuts, chamfered
EN 1661 Hexagon nuts with flange
ISO 7094 definitions Plain washers - Extra large series
ISO 7092 definitions Plain washers - Small series
ISO 7093-1 Plain washer - Large series
Screw-tap to drill inner threads in parts with user defined length
ScrewMaker can now also used as a python module.
The following shows how to generate a screw from a python script:
import screw_maker2_0
threadDef = 'M3.5'
o = screw_maker2_0.Screw()
t = screw_maker2_0.Screw.setThreadType(o,'real')
# Creates a Document-Object with label describing the screw
d = screw_maker2_0.Screw.createScrew(o, 'ISO1207', threadDef, '20', 'real')
# creates a shape in memory
t = screw_maker2_0.Screw.setThreadType(o,'real')
s = screw_maker1_9d.Screw.makeCountersunkHeadScrew(o, 'ISO14582', threadDef, 40.0)
Part.show(s)
to do: check ISO7380 usage of rs and rt, actual only rs is used
check chamfer angle on hexogon heads and nuts
***************************************************************************
* Copyright (c) 2013, 2014, 2015 *
* Ulrich Brammer <ulrich1a[at]users.sourceforge.net> *
* Refactor by shai 2022 *
* *
* This file is a supplement to the FreeCAD CAx development system. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License (LGPL) *
* as published by the Free Software Foundation; either version 2 of *
* the License, or (at your option) any later version. *
* for detail see the LICENCE text file. *
* *
* This software is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this macro; if not, write to the Free Software *
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *
* USA *
* *
***************************************************************************
"""
__author__ = "Ulrich Brammer <[email protected]>"
import FreeCAD
import Part
import math
from FreeCAD import Base
import importlib
import FastenerBase
from FastenerBase import FsData
from FastenerBase import FSFaceMaker
DEBUG = False # TODO: set to True to show debug messages; does not work.
# some common constants
sqrt2 = math.sqrt(2.0)
sqrt3 = math.sqrt(3.0)
cos30 = sqrt3 / 2.0 # math identity: math.cos(math.radians(30.0))
tan15 = 2.0 - sqrt3 # math identity: math.tan(math.radians(15))
class Screw:
def __init__(self):
self.objAvailable = True
self.Tuner = 510
self.LeftHanded = False
# thread scaling for 3D printers
# scaled_diam = diam * ScaleA + ScaleB
self.sm3DPrintMode = False
self.smNutThrScaleA = 1.0
self.smNutThrScaleB = 0.0
self.smScrewThrScaleA = 1.0
self.smScrewThrScaleB = 0.0
def createScrew(self, function, fastenerAttribs):
# self.simpThread = self.SimpleScrew.isChecked()
# self.symThread = self.SymbolThread.isChecked()
# FreeCAD.Console.PrintMessage(NL_text + "\n")
if not self.objAvailable:
return None
try:
if fastenerAttribs.calc_len is not None:
fastenerAttribs.calc_len = self.getLength(
fastenerAttribs.calc_len)
if not hasattr(self, function):
module = "FsFunctions.FS" + function
setattr(Screw, function, getattr(
importlib.import_module(module), function))
except ValueError:
# print "Error! nom_dia and length values must be valid numbers!"
FreeCAD.Console.PrintMessage(
"Error! nom_dia and length values must be valid numbers!\n")
return None
if (fastenerAttribs.Diameter == "Custom"):
fastenerAttribs.dimTable = None
else:
fastenerAttribs.dimTable = FsData[fastenerAttribs.baseType +
"def"][fastenerAttribs.Diameter]
self.LeftHanded = fastenerAttribs.LeftHanded
# self.fastenerLen = l
# fa.baseType = ST_text
# fa.calc_diam = ND_text
# self.customPitch = customPitch
# self.customDia = customDia
doc = FreeCAD.activeDocument()
if function != "":
function = "self." + function + "(fastenerAttribs)"
screw = eval(function)
done = True
else:
FreeCAD.Console.PrintMessage(
"No suitable function for " + fastenerAttribs.Type + " Screw Type!\n")
return None
# Part.show(screw)
return screw
def makeDin7998Thread(
self, zs: float, ze: float, zt: float, ri: float, ro: float, p: float,
isFlat: bool = False
) -> Part.Shape:
"""create a DIN 7998 Wood Thread
Parameters:
- zs: z position of start of the threaded part
- ze: z position of end of the flat portion of screw (just where the tip starts)
- zt: z position of screw tip
- ro: outer radius
- ri: inner radius
- p: thread pitch
"""
# epsilon needed since OCCT struggle to handle overlaps
epsilon = 0.03
tph = ro - ri # thread profile height
tphb = tph / math.tan(math.radians(60)) # thread profile half base
# size ratio between tip start thread and standard thread
tpratio = 0.5
tph2 = tph * tpratio
tphb2 = tphb * tpratio
tipH = ze - zt
# tip thread profile
fm = FastenerBase.FSFaceMaker()
fm.AddPoints((0.0, -tphb2), (0.0, tphb2), (2.0 * tphb2, tphb2))
aWire = fm.GetClosedWire()
aWire.translate(FreeCAD.Vector(epsilon, 0.0, 3.0 * tphb2))
# top thread profile
fm.Reset()
fm.AddPoints((0.0, -tphb), (0.0, tphb), (tph, 0.0))
bWire = fm.GetClosedWire()
bWire.translate(FreeCAD.Vector(ri - epsilon, 0.0, tphb + tipH))
# Only make the tip helix when the point is not flat
if not isFlat:
# create helix for tip thread part
numTurns = math.floor(tipH / p) or 1
FreeCAD.Console.PrintMessage(str(numTurns))
# Part.show(hlx)
hlx = Part.makeLongHelix(p, numTurns * p, 5, 0, self.LeftHanded)
sweep = Part.BRepOffsetAPI.MakePipeShell(hlx)
sweep.setFrenetMode(True)
sweep.setTransitionMode(1) # right corner transition
sweep.add(aWire)
sweep.add(bWire)
if sweep.isReady():
sweep.build()
sweep.makeSolid()
tip_solid = sweep.shape()
tip_solid.translate(FreeCAD.Vector(0.0, 0.0, zt))
# Part.show(tip_solid)
else:
raise RuntimeError("Failed to create woodscrew tip thread")
# create helix for body thread part
hlx = Part.makeLongHelix(p, zs - ze, 5, 0, self.LeftHanded)
hlx.translate(FreeCAD.Vector(0.0, 0.0, tipH))
sweep = Part.BRepOffsetAPI.MakePipeShell(hlx)
sweep.setFrenetMode(True)
sweep.setTransitionMode(1) # right corner transition
sweep.add(bWire)
if sweep.isReady():
sweep.build()
sweep.makeSolid()
body_solid = sweep.shape()
body_solid.translate(FreeCAD.Vector(0.0, 0.0, zt))
# Part.show(body_solid)
else:
raise RuntimeError("Failed to create woodscrew body thread")
if isFlat:
thread_solid = body_solid
else:
thread_solid = body_solid.fuse(tip_solid)
# rotate the thread solid to prevent OCC errors due to cylinder seams aligning
thread_solid.rotate(Base.Vector(0, 0, 0), Base.Vector(0, 0, 1), 180)
#Part.show(thread_solid, "thread_solid")
return thread_solid
@staticmethod
def GetInnerThreadMinDiameter(
dia: float, P: float, addEpsilon: float=0.001
) -> float:
H = P * cos30 # Thread depth H
return dia - H * 5.0 / 4.0 + addEpsilon
def CreateThreadCutter(self, dia: float, P: float, blen: float) -> Part.Shape:
"""Returns a shape that can be subtracted from a shaft to create a
standard 60 degree screw thread.
Parameters:
- dia: major diameter fo the threads
(e.g: this would be 6.0 for an M6 thread with nominal dimensions)
- P: thread pitch
- blen: thread length. The actual returned shape will be slightly
longer, to ensure that a thread of the specified length can be
cut without errors at it's ends
The shape is created at the origin, extending in the -Z direction.
"""
# create a sketch profile of the thread
# ref: https://en.wikipedia.org/wiki/ISO_metric_screw_thread
H = sqrt3 / 2 * P
trotations = blen // P + 1
fillet_r = P * sqrt3 / 12
helix_height = trotations * P
dia2 = dia / 2
fm = FastenerBase.FSFaceMaker()
fm.AddPoint(dia2 + sqrt3 * 3 / 80 * P, -0.475 * P)
fm.AddPoint(dia2 - 0.625 * H, -1 * P / 8)
fm.AddArc(dia2 - 0.625 * H - 0.5 * fillet_r,
0, dia2 - 0.625 * H, P / 8)
fm.AddPoint(dia2 + sqrt3 * 3 / 80 * P, 0.475 * P)
thread_profile_wire = fm.GetClosedWire()
thread_profile_wire.translate(Base.Vector(0, 0, -1 * helix_height))
# make the helical paths to sweep along
# NOTE: makeLongHelix creates slightly conical
# helices unless the 4th parameter is set to 0!
helix = Part.makeLongHelix(
P, helix_height, dia / 2, 0, self.LeftHanded)
helix.rotate(Base.Vector(0, 0, 0), Base.Vector(1, 0, 0), 180)
sweep = Part.BRepOffsetAPI.MakePipeShell(helix)
sweep.setFrenetMode(True)
sweep.setTransitionMode(1) # right corner transition
sweep.add(thread_profile_wire)
if sweep.isReady():
sweep.build()
else:
# geometry couldn't be generated in a usable form
raise RuntimeError(
"Failed to create shell thread: could not sweep thread")
sweep.makeSolid()
threads = sweep.shape()
threads.translate(Base.Vector(0.0, 0.0, P / 2))
return threads
def CreateInnerThreadCutter(self, dia: float, P: float, blen: float) -> Part.Shape:
H = P * cos30 # Thread depth H
r = dia / 2.0
# make just one turn, length is identical to pitch
helix = Part.makeLongHelix(
P, blen, r, 0, self.LeftHanded
)
# points for inner thread profile
fm = FastenerBase.FSFaceMaker()
fm.AddPoint(
r - 0.875 * H + 0.025 * P * sqrt3,
P / 2 * 0.95 + P * 1 / 16
)
fm.AddPoint(r, P * 2.0 / 16.0)
fm.AddArc(r + H * 1 / 24.0, P * 2.0 / 32.0, r, 0)
fm.AddPoint(
r - 0.875 * H + 0.025 * P * sqrt3,
-P / 2 * 0.95 + P * 1 / 16
)
W0 = fm.GetClosedWire()
W0.translate(Base.Vector(0, 0, -P * 9.0 / 16.0))
makeSolid = True
isFrenet = True
cutTool = Part.Wire(helix).makePipeShell([W0], makeSolid, isFrenet)
return cutTool
def CreateKnurlCutter(self, outDia: float, inDia: float, zbase: float, height: float, leftHanded: bool) -> Part.Shape:
ro = outDia / 2.0
ri = inDia / 2.0
p = outDia * 3.1415
tan_a2 = 1.2 # tan(50)
# make just one turn, length is identical to pitch
helix = Part.makeLongHelix(
p, height, ro, 0, leftHanded
)
# create base triangle
d2 = outDia - ri
y2 = (d2 - ri) * tan_a2
p1 = FreeCAD.Base.Vector(ri, 0, 0)
p2 = FreeCAD.Base.Vector(d2, y2, 0)
p3 = FreeCAD.Base.Vector(d2, -y2, 0)
l1 = Part.makeLine(p1, p2)
l2 = Part.makeLine(p2, p3)
l3 = Part.makeLine(p3, p1)
w = Part.Wire([l1,l2, l3])
cutElement = Part.Wire(helix).makePipeShell([w], True, True)
cutElement.translate(Base.Vector(0, 0, zbase))
cutElements = [cutElement]
ang = math.atan(y2 / d2) * 114.6 # 2 * 180 / pi
numCuts = int(360.0 / ang)
elementAng = 360 / numCuts
for i in range(1, numCuts):
nextElement = cutElement.copy().rotate(Base.Vector(0,0,0), Base.Vector(0,0,1), i * elementAng)
cutElements.append(nextElement)
cutTool = Part.Compound(cutElements)
return cutTool
def CreateBlindThreadCutter(self, dia: float, P: float, blen: float) -> Part.Shape:
"""Returns a shape that can be subtracted from a shaft to create a
standard 60 degree screw thread.
Parameters:
- dia: major diameter fo the threads
(e.g: this would be 6.0 for an M6 thread with nominal dimensions)
- P: thread pitch
- blen: thread length. The actual returned shape will be slightly
longer, to ensure that a thread of the specified length can be
cut without errors at it's ends
The shape is created at the origin, extending in the -Z direction.
It has a tapered lead out at the top of the shape, to simulate the
partially threaded section of a cut or rolled screw thread.
"""
# create a sketch profile of the thread
# ref: https://en.wikipedia.org/wiki/ISO_metric_screw_thread
H = sqrt3 / 2 * P
trotations = blen // P + 1
fillet_r = P * sqrt3 / 12
helix_height = trotations * P
dia2 = dia / 2
fm = FastenerBase.FSFaceMaker()
fm.AddPoint(dia2 + sqrt3 * 3 / 80 * P, -0.475 * P)
fm.AddPoint(dia2 - 0.625 * H, -1 * P / 8)
fm.AddArc(dia2 - 0.625 * H - 0.5 * fillet_r,
0, dia2 - 0.625 * H, P / 8)
fm.AddPoint(dia2 + sqrt3 * 3 / 80 * P, 0.475 * P)
thread_profile_wire = fm.GetClosedWire()
thread_profile_wire.translate(Base.Vector(0, 0, -1 * helix_height - P * 0.6))
# make the helical paths to sweep along
# NOTE: makeLongHelix creates slightly conical
# helices unless the 4th parameter is set to 0!
main_helix = Part.makeLongHelix(
P, helix_height, dia / 2, 0, self.LeftHanded)
lead_out_helix = Part.makeLongHelix(
P, P / 2, dia / 2 + 0.55 * (5 / 8 * H + 0.5 * fillet_r), 0, self.LeftHanded)
main_helix.rotate(Base.Vector(0, 0, 0), Base.Vector(1, 0, 0), 180)
lead_out_helix.translate(Base.Vector(
0.55 * (-1 * (5 / 8 * H + 0.5 * fillet_r)), 0, 0))
sweep_path = Part.Wire([main_helix, lead_out_helix])
# use Part.BrepOffsetAPI to sweep the thread profile
# ref: https://forum.freecadweb.org/viewtopic.php?t=21636#p168339
sweep = Part.BRepOffsetAPI.MakePipeShell(sweep_path)
sweep.setFrenetMode(True)
sweep.setTransitionMode(1) # right corner transition
sweep.add(thread_profile_wire)
if sweep.isReady():
sweep.build()
else:
# geometry couldn't be generated in a usable form
raise RuntimeError(
"Failed to create shell thread: could not sweep thread")
sweep.makeSolid()
threads = sweep.shape()
top_remover = Part.makeBox(
2 * dia,
2 * dia,
2 * dia,
Base.Vector(-dia, -dia, -P * 0.1)
)
threads = threads.cut(top_remover)
return threads
def CreateBlindInnerThreadCutter(
self, dia: float, P: float, blen: float
) -> Part.Shape:
"""create a blind inner thread cutter,
For use with a boolean cut operation.
The solid is oriented z-up and placed at the origin.
Parameters:
dia: outer diameter of threads
P: thread pitch
blen: usable threaded length, measured from the base of the cutter
"""
# simulate a 118 degree drill point at the end of the solid
conic_height = 0.55 * dia / math.tan(math.radians(59))
if blen <= conic_height:
raise ValueError(
f"Can't create thread cutter of diameter {dia} & height {blen}"
)
threads = self.CreateInnerThreadCutter(dia, P, blen + conic_height)
inner_rad = dia / 2 - 0.625 * sqrt3 / 2 * P
core = Part.makeCylinder(inner_rad, blen + 1.1 * conic_height + 1)
core.translate(Base.Vector(0.0, 0.0, -1.0))
obj = core.fuse(threads)
fm = FastenerBase.FSFaceMaker()
fm.AddPoint(0.0, 0.0)
fm.AddPoint(0.55 * dia, 0.0)
fm.AddPoint(0.55 * dia, blen)
fm.AddPoint(0.0, blen + conic_height)
drill = self.RevolveZ(fm.GetFace())
obj = obj.common(drill)
return Part.Solid(obj)
@staticmethod
def RevolveZ(profile: Part.Shape, angle=360) -> Part.Shape:
"""Returns the revolution of {profile} around the Z-axis,
through an included angle of {angle} degrees
"""
return profile.revolve(Base.Vector(0, 0, 0), Base.Vector(0, 0, 1), angle)
@staticmethod
def makeHexPrism(width: float, height: float) -> Part.Shape:
"""create a regular hexagonal prism
Parameters:
- width: width across flats.
(the cross-corner width is width * 2 / sqrt(3))
- height: overall height of the prism
"""
# create hexagon face
mhex = Base.Matrix()
mhex.rotateZ(math.radians(60.0))
polygon = []
vhex = Base.Vector(width / sqrt3, 0.0, 0.0)
for i in range(6):
polygon.append(vhex)
vhex = mhex.multiply(vhex)
polygon.append(vhex)
hexagon = Part.makePolygon(polygon)
hexagon = Part.Face(hexagon)
# Extrude in z to create the final shape
solid = hexagon.extrude(Base.Vector(0.0, 0.0, height))
return solid
@classmethod
def makeHCrossRecess(cls, CrossType: str, m: float) -> Part.Shape:
"""Create a Cross recess of type H.
Oriented in the Z direction , with outer diameter m at Z=0.
Parameters:
- CrossType: "0", "1", "2", "3", and "4" are supported.
- m: Functional outer diameter of the recess.
This also affects the overall height of the resulting shape.
"""
b, e_mean, g, f_mean, r, t1, alpha, beta = FsData["iso4757def"][CrossType]
rad265 = math.radians(26.5)
rad28 = math.radians(28.0)
tg = (m - g) / 2.0 / math.tan(rad265) # depth at radius of g
t_tot = tg + g / 2.0 * math.tan(rad28) # total depth
hm = m / 4.0
hmc = m / 2.0
rmax = m / 2.0 + hm * math.tan(rad265)
fm = FSFaceMaker()
fm.AddPoints((0.0, hm), (rmax, hm), (g / 2.0, -tg), (0.0, -t_tot))
aFace = fm.GetFace()
cross = cls.RevolveZ(aFace)
# we need to cut 4 corners out of the above shape.
# Definition of corner:
# The angles 92 degrees and alpha are defined on a plane which has
# an angle of beta against our coordinate system.
# The projected angles are needed for easier calculation!
rad_alpha = math.radians(alpha / 2.0)
rad92 = math.radians(92.0 / 2.0)
rad_beta = math.radians(beta)
rad_alpha_p = math.atan(math.tan(rad_alpha) / math.cos(rad_beta))
rad92_p = math.atan(math.tan(rad92) / math.cos(rad_beta))
tb = tg + (g - b) / 2.0 * math.tan(rad28) # depth at dimension b
# radius of b-corner at hm
rbtop = b / 2.0 + (hmc + tb) * math.tan(rad_beta)
# radius of b-corner at t_tot
rbtot = b / 2.0 - (t_tot - tb) * math.tan(rad_beta)
# delta between corner b and corner e in x direction
dre = e_mean / 2.0 / math.tan(rad_alpha_p)
dx = m / 2.0 * math.cos(rad92_p)
dy = m / 2.0 * math.sin(rad92_p)
PntC0 = Base.Vector(rbtop, 0.0, hmc)
PntC1 = Base.Vector(rbtot, 0.0, -t_tot)
PntC3 = Base.Vector(rbtot + dre, +e_mean / 2.0, -t_tot)
PntC5 = Base.Vector(rbtot + dre, -e_mean / 2.0, -t_tot)
PntC7 = Base.Vector(rbtot + dre + 2.0 * dx, +e_mean + 2.0 * dy, -t_tot)
PntC9 = Base.Vector(rbtot + dre + 2.0 * dx, -e_mean - 2.0 * dy, -t_tot)
wire_t_tot = Part.makePolygon(
[PntC1, PntC3, PntC7, PntC9, PntC5, PntC1])
edgeC1 = Part.makeLine(PntC0, PntC1)
makeSolid = True
isFrenet = False
corner = Part.Wire(edgeC1).makePipeShell(
[wire_t_tot], makeSolid, isFrenet)
for i in range(4):
cross = cross.cut(
corner.rotated(
Base.Vector(0, 0, 0),
Base.Vector(0, 0, 1),
90 * i
)
)
return Part.Solid(cross)
@classmethod
def makeHexRecess(cls, width: float, depth: float, chamfer: bool) -> Part.Shape:
"""create a standard internal hexagonal driving feature (or 'Allen' recess)
Parameters:
- width: dimension across flats of the recess shape.
- depth: usable depth of the recess. the returned shape has a larger overall
height due to a tapered point at the bottom
- chamfer: if True, a 45 degree chamfer is added at the top part of the shape
"""
prism = cls.makeHexPrism(width, 3.0 * depth)
prism.rotate(Base.Vector(0.0, 0.0, depth / 2), Base.Vector(1.0, 0.0, 0.0), 180)
cone1 = Part.makeCone(
(3 * depth + width) / sqrt3 + depth * sqrt3,
width * 0.08,
2 * depth + width / 3 - 0.08 * width * sqrt3 / 3,
Base.Vector(0.0, 0.0, depth),
Base.Vector(0.0, 0.0, -1.0),
360
)
recess = prism.common(cone1)
if chamfer:
r_3 = width * 0.49
r_2 = 1.005 * width / sqrt3
r_1 = depth + r_2 # math.tan(math.radians(45.)) = 1.
h_1 = r_2 - r_3
cone2 = Part.makeCone(
r_1,
r_3,
depth + h_1,
Base.Vector(0.0, 0.0, depth),
Base.Vector(0.0, 0.0, -1.0),
360
)
recess = recess.fuse(cone2)
return Part.Solid(recess)
@staticmethod
def makeHexalobularRecess(
drive_size: str, depth: float, chamfer: bool
) -> Part.Shape:
"""create an ISO 10664 Hexalobular internal driving feature for bolts and screws
Parameters:
- drive_size: e.g: "T20", "T100", etc.
- depth: usable depth of the recess. the returned shape has a larger overall
height due to a tapered point at the bottom
- chamfer: if True, a chamfer is added at the top part of the shape
"""
A, B, Re = FsData["iso10664def"][drive_size]
Ri = -((B + sqrt3 * (2. * Re - A)) * B + (A - 4. * Re) * A) / \
(4. * B - 2. * sqrt3 * A + (4. * sqrt3 - 8.) * Re)
beta = math.acos(A / (4 * Ri + 4 * Re) - (2 * Re) /
(4 * Ri + 4 * Re)) - math.pi / 6
Re_x = A / 2.0 - Re + Re * math.sin(beta)
Re_y = Re * math.cos(beta)
Ri_y = B / 4.0
Ri_x = sqrt3 * B / 4.0
mhex = Base.Matrix()
mhex.rotateZ(math.radians(60.0))
hexlobWireList = []
PntRe0 = Base.Vector(Re_x, -Re_y, depth)
PntRe1 = Base.Vector(A / 2.0, 0.0, depth)
PntRe2 = Base.Vector(Re_x, Re_y, depth)
edge0 = Part.Arc(PntRe0, PntRe1, PntRe2).toShape()
hexlobWireList.append(edge0)
PntRi = Base.Vector(Ri_x, Ri_y, depth)
PntRi2 = mhex.multiply(PntRe0)
edge1 = Part.Arc(PntRe2, PntRi, PntRi2).toShape()
hexlobWireList.append(edge1)
for i in range(5):
PntRe1 = mhex.multiply(PntRe1)
PntRe2 = mhex.multiply(PntRe2)
edge0 = Part.Arc(PntRi2, PntRe1, PntRe2).toShape()
hexlobWireList.append(edge0)
PntRi = mhex.multiply(PntRi)
PntRi2 = mhex.multiply(PntRi2)
if i == 5:
edge1 = Part.Arc(PntRe2, PntRi, PntRe0).toShape()
else:
edge1 = Part.Arc(PntRe2, PntRi, PntRi2).toShape()
hexlobWireList.append(edge1)
hexlobWire = Part.Wire(hexlobWireList)
face = Part.Face(hexlobWire)
# Extrude in z to create the cutting tool for the screw-head-face
prism = face.extrude(Base.Vector(0.0, 0.0, -3 * depth))
# add chamfers to surfaces
width = sqrt3 * A / 2
cone1 = Part.makeCone(
(3 * depth + width) / sqrt3 + depth * sqrt3,
width * 0.08,
2 * depth + width / 3 - 0.08 * width * sqrt3 / 3,
Base.Vector(0.0, 0.0, depth),
Base.Vector(0.0, 0.0, -1.0),
360
)
recess = prism.common(cone1)
if chamfer:
# 18 degree chamfer at top of recess cutter
cone2 = Part.makeCone(
0.505 * A + depth / math.tan(math.radians(18)),
0.49 * B,
depth + (0.505 * A - 0.49 * B) * math.tan(math.radians(18)),
Base.Vector(0.0, 0.0, depth),
Base.Vector(0.0, 0.0, -1.0),
360
)
recess = recess.fuse(cone2).removeSplitter()
return Part.Solid(recess)
@staticmethod
def makeSlotRecess(width: float, depth: float, head_diameter: float) -> Part.Shape:
"""Create a Cutting tool to add a slot driving feature to a screw head
Parameters:
- width: the width of the slot
- depth: slot depth - the returned shape extends by this amount below Z=0
- head_diameter: the head diameter of the specified screw
"""
shape = Part.makeBox(
head_diameter + 10,
width,
depth * 2,
Base.Vector(-(head_diameter + 10) / 2, -width / 2, -depth)
)
return shape
def getDia(self, ThreadDiam: str, isNut: bool) -> float:
"""returns a numerical diameter given a value in string format
Parameters:
- ThreadDiam: e.g: "1/4in" or "#6" or "M6" or "ST 6.3"
- isNut: if true, calculates the diameter for an internal thread,
as would be found on a standard hex-nut
This function takes into account the 3D-print compensation settings
of the instance, if they are enabled. for example, if:
self.smNutThrScaleA = 1.1
self.smNutThrScaleB = 0.05
then:
self.getDia("M6", True) == 6.65 # 6 * 1.1 + 0.05
"""
if isinstance(ThreadDiam, str):
threadstring = ThreadDiam.strip("()")
dia = FsData["DiaList"][threadstring][0]
else:
dia = ThreadDiam
if self.sm3DPrintMode:
if isNut:
dia = self.smNutThrScaleA * dia + self.smNutThrScaleB
else:
dia = self.smScrewThrScaleA * dia + self.smScrewThrScaleB
return dia
# NOTE:
# - On ISO 724 is presemted a table with the cooresponding minor
# and pitch diameters (d_1, d_2) for a given pair of major diameter and
# pitch (D, P), getDia1() amd getDia2() implement that correspondance.
# - On ISO 262 is presented tha available pitches for a given diameter.
# - On ISO 965-1 is presented the tolerances for metric screw thread.
def getDia1(self, D: float, P: float) -> float:
"""Returns the basic minor diameter of metric thread according to ISO 68-1
d_1 = D - 2 * 5/8 * H
Parameters:
- D: major diameter
- P: pitch
"""
H_5_8 = FsData["ISO68-1def"][str(P)][1]
return D - 2 * H_5_8
def getDia2(self, D: float, P: float) -> float:
"""Returns the basic pitch diameter of metric thread according to ISO 68-1
d_2 = D - 2 * 3/8 * H
Parameters:
- D: major diameter
- P: pitch
"""
H_3_8 = FsData["ISO68-1def"][str(P)][2]
return D - 2 * H_3_8
def getLength(self, LenStr: str) -> float:
"""Convert a length string to a corresponding numeric value."""
# washers and nuts pass an int (1), for their unused length attribute
# handle this circumstance if necessary
if isinstance(LenStr, int):
return LenStr
# otherwise convert the string to a number using predefined rules
if "in" not in LenStr:
LenFloat = float(LenStr.strip("()"))
else:
components = LenStr.strip("in").split(" ")
total = 0
for item in components:
if "/" in item:
subcmpts = item.split("/")
total += float(subcmpts[0]) / float(subcmpts[1])
else:
total += float(item)
LenFloat = total * 25.4
return LenFloat