forked from Fusion-Goettingen/SAM_2018_Yang_linearJPDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.m
89 lines (66 loc) · 1.99 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% Implementation of the multiple extended object tracking algorithm based on the article
%
% "Linear-Time Joint Probabilistic Data Association for Multiple Extended Object Tracking (to appear)"
% S. Yang, K. Thormann, and M. Baum
% 2018 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2018), Sheffield, United Kingdom, 2018.
%
%
%
% Further information:
% http://www.fusion.informatik.uni-goettingen.de
% https://github.com/Fusion-Goettingen
%
% Source code written by Shishan Yang
% =============================
clc
close all
clear
dbstop error
scenario = 1; % turn and closely-spaced
% scenario = 2; % cross
clambda = 40; % clutter rate
% motion and measurement parameters used for multiplicative noise model
Cv = diag([10 10]);
Crw = diag([10 10 10 10]);
Cpw(:,:,1) = diag([0.02 1 1]);
Cpw(:,:,2) = diag([0.02 1 1]);
Ar = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];
Ap = eye(3);
H = [eye(2);zeros(2,2)]';
figure
hold on
box on
axis equal
[gt, meas,mlambda, xbound, ybound,cp,nr_timesteps] = getMeasGt(scenario,clambda,Cv);
% first guess
r = [-20 -250 10 10;-20 250 10 -10];
p = [0 30 30;0 15 15 ];
N = size(r,1);
Cr(:,:,1) = diag([900 900 10 10]);
Cp(:,:,1) = diag([.2 400 400]);
Cr(:,:,2) = diag([900 900 10 10]);
Cp(:,:,2) = diag([.02 100 100]);
%% plot first guess
for n = 1:N
plot_extent([r(n,1:2) p(n,:)],'--','r',1);
end
for t = 1:nr_timesteps
[r,p,Cr,Cp] = MEOT_JPDA(meas{t},r,p,Cr,Cp,cp,H,Cv,mlambda,clambda);
%% Visulize
if mod(t,3)==1
pMeas = plot(meas{t}(1,:),meas{t}(2,:),'k.');
for n = 1:N
plotGT = plot_extent(gt(n,1:5,t),'-','k',1);
plotEst = plot_extent([r(n,1:2),p(n,:)],'-','g',1);
end
pause(0.001)
end
%% prediction
for n = 1:N
r(n,:) = Ar*r(n,:)';
p(n,:) = Ap*p(n,:)';
Cr(:,:,n) = Ar*Cr(:,:,n)*Ar'+Crw;
Cp(:,:,n) = Ap*Cp(:,:,n)*Ap'+Cpw(:,:,n);
end
end
legend([plotGT plotEst],{'Ground Truth','Estimates'})