- 基础数据结构的理解和编码能力
- 递归使用
5
/ \
3 6
/ \
2 4
/
1
说明:保证输入的 K 满足 1<=K<=(节点数目)
树相关的题目,第一眼就想到递归求解,左右子树分别遍历。联想到二叉搜索树的性质,root 大于左子树,小于右子树,如果左子树的节点数目等于 K-1,那么 root 就是结果,否则如果左子树节点数目小于 K-1,那么结果必然在右子树,否则就在左子树。因此在搜索的时候同时返回节点数目,跟 K 做对比,就能得出结果了。
/**
* Definition for a binary tree node.
**/
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
class Solution {
private class ResultType {
boolean found; // 是否找到
int val; // 节点数目
ResultType(boolean found, int val) {
this.found = found;
this.val = val;
}
}
public int kthSmallest(TreeNode root, int k) {
return kthSmallestHelper(root, k).val;
}
private ResultType kthSmallestHelper(TreeNode root, int k) {
if (root == null) {
return new ResultType(false, 0);
}
ResultType left = kthSmallestHelper(root.left, k);
// 左子树找到,直接返回
if (left.found) {
return new ResultType(true, left.val);
}
// 左子树的节点数目 = K-1,结果为 root 的值
if (k - left.val == 1) {
return new ResultType(true, root.val);
}
// 右子树寻找
ResultType right = kthSmallestHelper(root.right, k - left.val - 1);
if (right.found) {
return new ResultType(true, right.val);
}
// 没找到,返回节点总数
return new ResultType(false, left.val + 1 + right.val);
}
}