Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in array(NA_real_, dim = c(nrow(b), ncol(cc), length(lev)), dimnames = c(rownames(b), : length of 'dimnames' [1686] must match that of 'dims' [3] #10

Open
charlesgwellem opened this issue Aug 29, 2019 · 2 comments

Comments

@charlesgwellem
Copy link

charlesgwellem commented Aug 29, 2019

Hi there,

I wish to deconvolve my bulk RNA seq data with single cell RNA seq data from the same tissue. I run in to the following error when running the code line below and I do not understand why. Can any one please help?


csfit <- bseqsc_csdiff(ilc_bulk[genes, ] ~ treatment | fibroblast + macrophage, 
                       verbose = 2, nperms = 100, .rng = 12345)

Then comes the error:


Groups: a_nacl1=4L | a_nacl2=4L | a_nacl3=4L | a_nacl4=4L | a_nacl5=4L | NA0L
Cell type(s): 'fibroblast', 'macrophage' (2 total)
Fitting mode: auto
Data (filtered): 1684 features x 20 samples
Model has factor effect with more than 2 levels: fitting lm interaction model
Fitting model with nonnegative effects
Model with more than 2 groups: switching to version 2
 Fitting linear interaction model ...  OK
 Computing FDR using 100 permutations ... 101/100
  Alternative 'two.sided' ...   OK
  Alternative 'greater' ...   OK
  Alternative 'less' ...   OK
 OK
Timing:
   user  system elapsed 
  2.136   0.153   2.267 
Error in array(NA_real_, dim = c(nrow(b), ncol(cc), length(lev)), dimnames = c(rownames(b),  : 
  length of 'dimnames' [1687] must match that of 'dims' [3]
> sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=de_DE.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] edgeR_3.26.6                limma_3.40.6                forcats_0.4.0               stringr_1.4.0              
 [5] purrr_0.3.2                 readr_1.3.1                 tidyr_0.8.3                 tibble_2.1.3               
 [9] tidyverse_1.2.1             SoupX_0.3.1                 ggplot2_3.2.0               dplyr_0.8.3                
[13] DropletUtils_1.4.3          SingleCellExperiment_1.6.0  SummarizedExperiment_1.14.0 DelayedArray_0.10.0        
[17] BiocParallel_1.18.0         matrixStats_0.54.0          GenomicRanges_1.36.0        GenomeInfoDb_1.20.0        
[21] RColorBrewer_1.1-2          xbioc_0.1.17                AnnotationDbi_1.46.0        IRanges_2.18.1             
[25] S4Vectors_0.22.0            BisqueRNA_1.0               Seurat_3.0.2                preprocessCore_1.46.0      
[29] e1071_1.7-2                 bseqsc_1.0                  csSAM_1.4                   Rcpp_1.0.2                 
[33] openxlsx_4.1.0.1            Biobase_2.44.0              BiocGenerics_0.30.0        

loaded via a namespace (and not attached):
  [1] reticulate_1.13        R.utils_2.9.0          tidyselect_0.2.5       RSQLite_2.1.2          htmlwidgets_1.3       
  [6] grid_3.6.1             Rtsne_0.15             devtools_2.1.0         munsell_0.5.0          codetools_0.2-16      
 [11] ica_1.0-2              future_1.14.0          withr_2.1.2            colorspace_1.4-1       rstudioapi_0.10       
 [16] ROCR_1.0-7             gbRd_0.4-11            listenv_0.7.0          NMF_0.22               Rdpack_0.11-0         
 [21] labeling_0.3           GenomeInfoDbData_1.2.1 bit64_0.9-7            rhdf5_2.28.0           rprojroot_1.3-2       
 [26] vctrs_0.2.0            generics_0.0.2         R6_2.4.0               doParallel_1.0.14      rsvd_1.0.2            
 [31] locfit_1.5-9.1         bitops_1.0-6           assertthat_0.2.1       SDMTools_1.1-221.1     scales_1.0.0          
 [36] gtable_0.3.0           npsurv_0.4-0           globals_0.12.4         processx_3.4.1         rlang_0.4.0           
 [41] zeallot_0.1.0          splines_3.6.1          lazyeval_0.2.2         broom_0.5.2            modelr_0.1.4          
 [46] BiocManager_1.30.4     yaml_2.2.0             reshape2_1.4.3         backports_1.1.4        tools_3.6.1           
 [51] usethis_1.5.1          gridBase_0.4-7         gplots_3.0.1.1         sessioninfo_1.1.1      ggridges_0.5.1        
 [56] plyr_1.8.4             zlibbioc_1.30.0        RCurl_1.95-4.12        ps_1.3.0               prettyunits_1.0.2     
 [61] pbapply_1.4-1          viridis_0.5.1          cowplot_1.0.0          zoo_1.8-6              haven_2.1.1           
 [66] ggrepel_0.8.1          cluster_2.1.0          fs_1.3.1               magrittr_1.5           data.table_1.12.2     
 [71] lmtest_0.9-37          RANN_2.6.1             fitdistrplus_1.0-14    pkgload_1.0.2          hms_0.5.0             
 [76] lsei_1.2-0             xtable_1.8-4           readxl_1.3.1           gridExtra_2.3          testthat_2.2.1        
 [81] compiler_3.6.1         KernSmooth_2.23-15     crayon_1.3.4           R.oo_1.22.0            htmltools_0.3.6       
 [86] Formula_1.2-3          lubridate_1.7.4        DBI_1.0.0              MASS_7.3-51.4          Matrix_1.2-17         
 [91] cli_1.1.0              R.methodsS3_1.7.1      gdata_2.18.0           metap_1.1              igraph_1.2.4.1        
 [96] pkgconfig_2.0.2        registry_0.5-1         plotly_4.9.0           xml2_1.2.1             foreach_1.4.7         
[101] dqrng_0.2.1            rngtools_1.4           pkgmaker_0.28          XVector_0.24.0         rvest_0.3.4           
[106] bibtex_0.4.2           callr_3.3.1            digest_0.6.20          sctransform_0.2.0      tsne_0.1-3            
[111] cellranger_1.1.0       dendextend_1.12.0      curl_4.0               gtools_3.8.1           nlme_3.1-141          
[116] jsonlite_1.6           Rhdf5lib_1.6.0         desc_1.2.0             viridisLite_0.3.0      pillar_1.4.2          
[121] lattice_0.20-38        httr_1.4.0             pkgbuild_1.0.3         survival_2.44-1.1      glue_1.3.1            
[126] remotes_2.1.0          zip_2.0.3              png_0.1-7              iterators_1.0.12       bit_1.1-14            
[131] class_7.3-15           stringi_1.4.3          HDF5Array_1.12.1       blob_1.2.0             caTools_1.17.1.2      
[136] memoise_1.1.0          irlba_2.3.3            future.apply_1.3.0     ape_5.3       
@dudufan1992
Copy link

**Hi there,

I wish to analysis celltype specific differentially expressed genes with cell proportion though csSamfit.R, but I got the same problem with charlesgwellem.**

csfit_test <- bseqsc_csdiff(eset[1:5,] ~Timepoint+Infection | + B.Cells + CD4.T.Cells + CD8.T.Cells + Dendritic.Cells + Monocytes, verbose = 2, nperms = 50, .rng = 12345)
Groups: Mex4482=15L | Anhui01=15L | NL219=15L | VN1203=14L | NA0L
Cell type(s): 'B.Cells', 'CD4.T.Cells', ..., 'Monocytes' (5 total)
Fitting mode: auto
Data (filtered): 5 features x 59 samples
Model has extra covariates: fitting lm interaction model
Fitting model with nonnegative effects
Model with more than 2 groups: switching to version 2
Fitting linear interaction model ... OK
Computing FDR using 50 permutations ... 51/50
Alternative 'two.sided' ... OK
Alternative 'greater' ... OK
Alternative 'less' ... OK
OK
Timing:
user system elapsed
0.70 0.00 0.75
Error in array(NA_real_, dim = c(nrow(b), ncol(cc), length(lev)), dimnames = c(rownames(b), :
length of 'dimnames' [11] must match that of 'dims' [3]

length of 'dimnames' [11] six more than length of gene feature which I input.
Looking forward to someone reply

@rammohanshukla
Copy link

Hi developers,
I am getting the same issues while working with the example dataset given in the website, wondering if there is any solution to this

csfit <- bseqsc_csdiff(eset[genes, ] ~ gender + ageN + hba1c_class2 | alpha + beta + ductal + acinar, verbose = 2, nperms = 5000, .rng = 12345)
Groups: Normal=47L | Hyper=23L | NA12L
Cell type(s): 'alpha', 'beta', ..., 'acinar' (4 total)
Warning: Dropping samples with NA group/value: 'GSM1216754', 'GSM1216756', ..., 'GSM1216831' [12]
Fitting mode: auto
Groups (filtered): Normal=47L | Hyper=23L | NA0L
Data (filtered): 255 features x 70 samples
Model has extra covariates: fitting lm interaction model
Fitting model with nonnegative effects
Fitting linear interaction model ... Error in cbind(covariates, D[, -1L, drop = FALSE]) :
number of rows of matrices must match (see arg 2)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants