-
Notifications
You must be signed in to change notification settings - Fork 0
/
blink_eye.py
147 lines (83 loc) · 2.6 KB
/
blink_eye.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import cv2
import numpy as np
import time
from scipy.spatial import distance as dist
import dlib
from collections import OrderedDict
def eye_aspect_ratio(eye):
A=dist.euclidean(eye[1],eye[5])
B=dist.euclidean(eye[2],eye[4])
C=dist.euclidean(eye[0],eye[3])
ear=(A+B)/(2.0 * C)
return ear
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 3
COUNTER = 0
TOTAL = 0
FACIAL_LANDMARKS_IDXS = OrderedDict([
("mouth", (48, 68)),
("inner_mouth", (60, 68)),
("right_eyebrow", (17, 22)),
("left_eyebrow", (22, 27)),
("right_eye", (36, 42)),
("left_eye", (42, 48)),
("nose", (27, 36)),
("jaw", (0, 17))
])
def resize_pyim(image, width=None, height=None, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation=inter)
return resized
def shape_to_np(shape, dtype="int"):
coords = np.zeros((68,2), dtype=dtype)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
(lStart, lEnd) = FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = FACIAL_LANDMARKS_IDXS["right_eye"]
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
ret, frame = cap.read()
frame = resize_pyim(frame, width=450)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Second parameter is the number of image pyramid layers
rects = detector(gray, 0)
for rect in rects:
shape=predictor(gray,rect)
shape=shape_to_np(shape)
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
leftEyeHull=cv2.convexHull(leftEye)
rightEyeHull=cv2.convexHull(rightEye)
cv2.drawContours(frame,[leftEyeHull],-1,(0,255,0),1)
cv2.drawContours(frame,[rightEyeHull],-1,(0,255,0),1)
if(ear<EYE_AR_THRESH):
COUNTER +=1
else:
if COUNTER>=EYE_AR_CONSEC_FRAMES:
TOTAL +=1
COUNTER=0
cv2.putText(frame,"Blinks: {}".format(TOTAL), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Blink Detection",frame)
key=cv2.waitKey(1) & 0xFF
if key==ord("q"):
break
cap.release()
cv2.destroyAllWindows()