-
Notifications
You must be signed in to change notification settings - Fork 1
/
IndexLSH.cpp
180 lines (135 loc) · 4.19 KB
/
IndexLSH.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "IndexLSH.h"
#include <cstdio>
#include <cstring>
#include <algorithm>
#include "utils.h"
#include "hamming.h"
#include "FaissAssert.h"
namespace faiss {
/***************************************************************
* IndexLSH
***************************************************************/
IndexLSH::IndexLSH (idx_t d, int nbits, bool rotate_data, bool train_thresholds):
Index(d), nbits(nbits), rotate_data(rotate_data),
train_thresholds (train_thresholds), rrot(d, nbits)
{
is_trained = !train_thresholds;
bytes_per_vec = (nbits + 7) / 8;
if (rotate_data) {
rrot.init(5);
} else {
FAISS_THROW_IF_NOT (d >= nbits);
}
}
IndexLSH::IndexLSH ():
nbits (0), bytes_per_vec(0), rotate_data (false), train_thresholds (false)
{
}
const float * IndexLSH::apply_preprocess (idx_t n, const float *x) const
{
float *xt = nullptr;
if (rotate_data) {
// also applies bias if exists
xt = rrot.apply (n, x);
} else if (d != nbits) {
xt = new float [nbits * n];
float *xp = xt;
for (idx_t i = 0; i < n; i++) {
const float *xl = x + i * d;
for (int j = 0; j < nbits; j++)
*xp++ = xl [j];
}
}
if (train_thresholds) {
if (xt == NULL) {
xt = new float [nbits * n];
memcpy (xt, x, sizeof(*x) * n * nbits);
}
float *xp = xt;
for (idx_t i = 0; i < n; i++)
for (int j = 0; j < nbits; j++)
*xp++ -= thresholds [j];
}
return xt ? xt : x;
}
void IndexLSH::train (idx_t n, const float *x)
{
if (train_thresholds) {
thresholds.resize (nbits);
train_thresholds = false;
const float *xt = apply_preprocess (n, x);
ScopeDeleter<float> del (xt == x ? nullptr : xt);
train_thresholds = true;
float * transposed_x = new float [n * nbits];
ScopeDeleter<float> del2 (transposed_x);
for (idx_t i = 0; i < n; i++)
for (idx_t j = 0; j < nbits; j++)
transposed_x [j * n + i] = xt [i * nbits + j];
for (idx_t i = 0; i < nbits; i++) {
float *xi = transposed_x + i * n;
// std::nth_element
std::sort (xi, xi + n);
if (n % 2 == 1)
thresholds [i] = xi [n / 2];
else
thresholds [i] = (xi [n / 2 - 1] + xi [n / 2]) / 2;
}
}
is_trained = true;
}
void IndexLSH::add (idx_t n, const float *x)
{
FAISS_THROW_IF_NOT (is_trained);
const float *xt = apply_preprocess (n, x);
ScopeDeleter<float> del (xt == x ? nullptr : xt);
codes.resize ((ntotal + n) * bytes_per_vec);
fvecs2bitvecs (xt, &codes[ntotal * bytes_per_vec], nbits, n);
ntotal += n;
}
void IndexLSH::search (
idx_t n,
const float *x,
idx_t k,
float *distances,
idx_t *labels) const
{
FAISS_THROW_IF_NOT (is_trained);
const float *xt = apply_preprocess (n, x);
ScopeDeleter<float> del (xt == x ? nullptr : xt);
uint8_t * qcodes = new uint8_t [n * bytes_per_vec];
ScopeDeleter<uint8_t> del2 (qcodes);
fvecs2bitvecs (xt, qcodes, nbits, n);
int * idistances = new int [n * k];
ScopeDeleter<int> del3 (idistances);
int_maxheap_array_t res = { size_t(n), size_t(k), labels, idistances};
hammings_knn_hc (&res, qcodes, codes.data(),
ntotal, bytes_per_vec, true);
// convert distances to floats
for (int i = 0; i < k * n; i++)
distances[i] = idistances[i];
}
void IndexLSH::transfer_thresholds (LinearTransform *vt) {
if (!train_thresholds) return;
FAISS_THROW_IF_NOT (nbits == vt->d_out);
if (!vt->have_bias) {
vt->b.resize (nbits, 0);
vt->have_bias = true;
}
for (int i = 0; i < nbits; i++)
vt->b[i] -= thresholds[i];
train_thresholds = false;
thresholds.clear();
}
void IndexLSH::reset() {
codes.clear();
ntotal = 0;
}
} // namespace faiss