-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtesting_our_models.py
142 lines (102 loc) · 4.57 KB
/
testing_our_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 1 13:28:51 2022
@author: Shomer
"""
# In[Importing libraries]:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from data_pipeline import transformation_pipeline
from sklearn.model_selection import train_test_split
import tensorflow as tf
# %% Reading data
data = pd.read_csv('content/preprocessed_train.csv')
# let's pick the data wiht primary_use==0
data = data.query('primary_use==0 & meter==0')
# %%
b_id = data.building_id.unique()
# %% Creating a pipeline object and cleaning data
pipeline, data_cleaned = transformation_pipeline(
data, building_id=210, meter=0, primary_use=0)
# %% Transforming the data and showing it
transformed_data = pipeline.fit_transform(data_cleaned)
# %%
data_gen = tf.keras.preprocessing.sequence.TimeseriesGenerator(transformed_data[:, 1:],
transformed_data[:, 0],
length=6, sampling_rate=1,
stride=1, batch_size=32,
shuffle=False
)
# %%
# a function for plotting
def plot_output(actual, predicted, title, building_idx, avg_loss):
fig, (ax1, ax2, ax) = plt.subplots(3, 1, figsize=(30, 15), sharex=True)
fig.suptitle(
f'{title} model for building {building_idx}\nmse={avg_loss:.5f}', fontsize=24)
ax1.plot(range(len(actual)),
predicted,
color='green', linestyle='dashed')
ax1.set_title('Predicted')
ax1.set_ylim(0, 1)
ax2.plot(range(len(actual)),
actual,
color='red', label='Actual')
ax2.set_title('Actual')
ax2.set_ylim(0, 1)
ax.plot(range(len(actual)),
predicted,
color='green', linestyle='dashed',
label='Predicted')
ax.plot(range(len(actual)),
actual,
color='red',
label='actual')
ax.set_ylim(0, 1)
plt.legend()
plt.show()
fig.savefig(
f'Plots/{title}_model/building {building_idx} mse {avg_loss:.5f}.png')
# %%
# function to laod certain building id
def loading_data(idx):
pipeline, data_cleaned = transformation_pipeline(
data, building_id=idx, meter=0, primary_use=0)
transformed_data = pipeline.fit_transform(data_cleaned)
x_train, x_val, y_train, y_val = train_test_split(transformed_data[:, 1:],
transformed_data[:, 0],
train_size=0.2,
shuffle=False,
random_state=2021)
train_gen = tf.keras.preprocessing.sequence.TimeseriesGenerator(x_train,
y_train,
length=6, sampling_rate=1,
stride=1, batch_size=32,
shuffle=False
)
val_gen = tf.keras.preprocessing.sequence.TimeseriesGenerator(x_val,
y_val,
length=6, sampling_rate=1,
stride=1, batch_size=32,
shuffle=False
)
return train_gen, val_gen
# %% loading models to evaluate them on new data
models = ['models/Transformer_adam',
'models/GRU_ADAM',
'models/LSTM_ADAM']
for building_idx in b_id:
train_gen, test_gen = loading_data(building_idx)
for model_address in models:
predicted = []
actual = []
model = tf.keras.models.load_model(model_address)
model.fit(train_gen, epochs=15, verbose=False)
for i in range(50):
predicted.extend(model.predict(test_gen[i][0]))
actual.extend(test_gen[i][1])
txt = model_address.split('/')[1].split('_')[0]
avg_loss = np.mean(tf.keras.losses.MSE(actual, predicted))
plot_output(actual, predicted, txt, building_idx, avg_loss)
#print(f'for model {txt} the mean loss= {avg_loss}')
# %%