-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
244 lines (182 loc) · 6.2 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
'''
Reference taken from the Dassl.pytorch repo: https://github.com/KaiyangZhou/Dassl.pytorch
'''
import os
import numpy as np
import os.path as osp
from torch.utils.data import Dataset
from collections import defaultdict
from PIL import Image
from prettytable import PrettyTable
def listdir_nohidden(path, sort=False):
"""List non-hidden items in a directory.
Args:
path (str): directory path.
sort (bool): sort the items.
"""
items = [f for f in os.listdir(path) if not f.startswith(".")]
if sort:
items.sort()
return items
def read_image(path):
"""Read image from path using ``PIL.Image``.
Args:
path (str): path to an image.
Returns:
PIL image
"""
if not osp.exists(path):
raise IOError("No file exists at {}".format(path))
while True:
try:
img = Image.open(path).convert("RGB")
return img
except IOError:
print(
"Cannot read image from {}, "
"probably due to heavy IO. Will re-try".format(path)
)
class Datum:
def __init__(self, impath="", label=0, classname=""):
assert isinstance(impath, str)
self._impath = impath
self._label = label
self._classname = classname
@property
def impath(self):
return self._impath
@property
def label(self):
return self._label
@property
def classname(self):
return self._classname
class DatasetBase:
def __init__(self, train=None, val=None):
self._train = train # labeled training data
self._val = val # labeled validation data
self._num_classes = self.get_num_classes(train)
self._lab2cname, self._classnames = self.get_lab2cname(train)
self._class_count = self.get_class_count(train)
self._weight_class = self.get_weight_class(train, self.class_count)
@property
def train(self):
return self._train
@property
def val(self):
return self._val
@property
def class_distribution(self):
table = PrettyTable()
table.add_column("Class", self.classnames)
table.add_column("Count", list(self.class_count.values()))
table.add_column("Weights Per Class", ['%.5f' % (1. / val) for val in list(self.class_count.values())])
return table
@property
def weight_class(self):
return self._weight_class
@property
def class_count(self):
return self._class_count
@property
def lab2cname(self):
return self._lab2cname
@property
def classnames(self):
return self._classnames
@property
def num_classes(self):
return self._num_classes
def get_weight_class(self, data_source, class_count):
"""Count the weight per sample.
Args:
class_count (dict): a dict of class count.
data_source (list): a list of item Datum.
"""
weight_class = list()
for item in data_source:
weight_class.append(1. / class_count[item.label])
return np.array(weight_class)
def get_class_count(self, data_source):
"""Count number of samples per class.
Args:
data_source (list): a list of Datum objects.
"""
class_count = defaultdict(int)
for item in data_source:
class_count[item.label] += 1
return class_count
def get_num_classes(self, data_source):
"""Count number of classes.
Args:
data_source (list): a list of Datum objects.
"""
label_set = set()
for item in data_source:
label_set.add(item.label)
return max(label_set) + 1
def get_lab2cname(self, data_source):
"""Get a label-to-classname mapping (dict).
Args:
data_source (list): a list of Datum objects.
"""
container = set()
for item in data_source:
container.add((item.label, item.classname))
mapping = {label: classname for label, classname in container}
labels = list(mapping.keys())
labels.sort()
classnames = [mapping[label] for label in labels]
return mapping, classnames
class DataList(DatasetBase):
'''
Create a list of Datum Objects for every image and class.
Args:
rootpath: Path to the dataset. Must consist of [train, {val, test}] folders
'''
def __init__(self, rootpath, percent=1.0):
self.dataset_dir = rootpath
self.percent = percent
train = self._read_data(split='train')
val = self._read_data(split='val')
super().__init__(train=train, val=val)
def _read_data(self, split='train'):
items = list()
parent_dir = osp.join(self.dataset_dir, split)
class_names = listdir_nohidden(parent_dir)
class_names.sort()
for label, class_name in enumerate(class_names):
class_path = osp.join(parent_dir, class_name)
imnames = listdir_nohidden(class_path)
if split == 'train':
imnames = imnames[:round(len(imnames) * self.percent)]
for imname in imnames:
impath = osp.join(class_path, imname)
item = Datum(
impath=impath,
label=label,
classname=class_name
)
items.append(item)
return items
class MyDataset(Dataset):
def __init__(self, data_source, train_transform=None, test_transform=None, is_train=True):
self.data_source = data_source
assert (train_transform is not None or test_transform is not None) # One transform should be compulsory
self.train_transform = train_transform
self.test_transform = test_transform
self.is_train = is_train
def __len__(self):
return len(self.data_source)
def __getitem__(self, idx):
item = self.data_source[idx]
output = {
"label": item.label,
}
img0 = read_image(item.impath)
if self.is_train:
img = self.train_transform(img0)
else:
img = self.test_transform(img0)
output['img'] = img
return output