-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm_2.0.py
386 lines (305 loc) · 11.9 KB
/
lstm_2.0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
This notebook is based on https://keras.io/examples/audio/speaker_recognition_using_cnn/
"""
from google.colab import drive
drive.mount('/content/drive')
"""## Setup"""
import os
import shutil
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
from pathlib import Path
from IPython.display import display, Audio
# Get the data from https://www.kaggle.com/kongaevans/speaker-recognition-dataset/download
# and save it to the 'Downloads' folder in your HOME directory
DATASET_ROOT = "/content/drive/MyDrive/AI_Project/archive/16000_pcm_speeches"
# The folders in which we will put the audio samples and the noise samples
AUDIO_SUBFOLDER = "audio"
NOISE_SUBFOLDER = "noise"
DATASET_AUDIO_PATH = os.path.join(DATASET_ROOT, AUDIO_SUBFOLDER)
DATASET_NOISE_PATH = os.path.join(DATASET_ROOT, NOISE_SUBFOLDER)
# Percentage of samples to use for validation
VALID_SPLIT = 0.1
# Seed to use when shuffling the dataset and the noise
SHUFFLE_SEED = 43
# The sampling rate to use.
# This is the one used in all of the audio samples.
# We will resample all of the noise to this sampling rate.
# This will also be the output size of the audio wave samples
# (since all samples are of 1 second long)
SAMPLING_RATE = 16000
# The factor to multiply the noise with according to:
# noisy_sample = sample + noise * prop * scale
# where prop = sample_amplitude / noise_amplitude
SCALE = 0.5
BATCH_SIZE = 64
EPOCHS = 50
"""## Data preparation
"""
# If folder `audio`, does not exist, create it, otherwise do nothing
if os.path.exists(DATASET_AUDIO_PATH) is False:
os.makedirs(DATASET_AUDIO_PATH)
# If folder `noise`, does not exist, create it, otherwise do nothing
if os.path.exists(DATASET_NOISE_PATH) is False:
os.makedirs(DATASET_NOISE_PATH)
for folder in os.listdir(DATASET_ROOT):
if os.path.isdir(os.path.join(DATASET_ROOT, folder)):
if folder in [AUDIO_SUBFOLDER, NOISE_SUBFOLDER]:
# If folder is `audio` or `noise`, do nothing
continue
elif folder in ["other", "_background_noise_"]:
# If folder is one of the folders that contains noise samples,
# move it to the `noise` folder
shutil.move(
os.path.join(DATASET_ROOT, folder),
os.path.join(DATASET_NOISE_PATH, folder),
)
else:
# Otherwise, it should be a speaker folder, then move it to
# `audio` folder
shutil.move(
os.path.join(DATASET_ROOT, folder),
os.path.join(DATASET_AUDIO_PATH, folder),
)
"""## Noise preparation
"""
# Get the list of all noise files
noise_paths = []
for subdir in os.listdir(DATASET_NOISE_PATH):
subdir_path = Path(DATASET_NOISE_PATH) / subdir
if os.path.isdir(subdir_path):
noise_paths += [
os.path.join(subdir_path, filepath)
for filepath in os.listdir(subdir_path)
if filepath.endswith(".wav")
]
print(
"Found {} files belonging to {} directories".format(
len(noise_paths), len(os.listdir(DATASET_NOISE_PATH))
)
)
"""Resample all noise samples to 16000 Hz"""
command = (
"for dir in `ls -1 " + DATASET_NOISE_PATH + "`; do "
"for file in `ls -1 " + DATASET_NOISE_PATH + "/$dir/*.wav`; do "
"sample_rate=`ffprobe -hide_banner -loglevel panic -show_streams "
"$file | grep sample_rate | cut -f2 -d=`; "
"if [ $sample_rate -ne 16000 ]; then "
"ffmpeg -hide_banner -loglevel panic -y "
"-i $file -ar 16000 temp.wav; "
"mv temp.wav $file; "
"fi; done; done"
)
os.system(command)
# Split noise into chunks of 16,000 steps each
def load_noise_sample(path):
sample, sampling_rate = tf.audio.decode_wav(
tf.io.read_file(path), desired_channels=1
)
if sampling_rate == SAMPLING_RATE:
# Number of slices of 16000 each that can be generated from the noise sample
slices = int(sample.shape[0] / SAMPLING_RATE)
sample = tf.split(sample[: slices * SAMPLING_RATE], slices)
return sample
else:
print("Sampling rate for {} is incorrect. Ignoring it".format(path))
return None
noises = []
for path in noise_paths:
sample = load_noise_sample(path)
if sample:
noises.extend(sample)
noises = tf.stack(noises)
print(
"{} noise files were split into {} noise samples where each is {} sec. long".format(
len(noise_paths), noises.shape[0], noises.shape[1] // SAMPLING_RATE
)
)
"""## Dataset generation"""
def paths_and_labels_to_dataset(audio_paths, labels):
"""Constructs a dataset of audios and labels."""
path_ds = tf.data.Dataset.from_tensor_slices(audio_paths)
audio_ds = path_ds.map(lambda x: path_to_audio(x))
label_ds = tf.data.Dataset.from_tensor_slices(labels)
return tf.data.Dataset.zip((audio_ds, label_ds))
def path_to_audio(path):
"""Reads and decodes an audio file."""
audio = tf.io.read_file(path)
audio, _ = tf.audio.decode_wav(audio, 1, SAMPLING_RATE)
return audio
def add_noise(audio, noises=None, scale=0.5):
if noises is not None:
# Create a random tensor of the same size as audio ranging from
# 0 to the number of noise stream samples that we have.
tf_rnd = tf.random.uniform(
(tf.shape(audio)[0],), 0, noises.shape[0], dtype=tf.int32
)
noise = tf.gather(noises, tf_rnd, axis=0)
# Get the amplitude proportion between the audio and the noise
prop = tf.math.reduce_max(audio, axis=1) / tf.math.reduce_max(noise, axis=1)
prop = tf.repeat(tf.expand_dims(prop, axis=1), tf.shape(audio)[1], axis=1)
# Adding the rescaled noise to audio
audio = audio + noise * prop * scale
return audio
def audio_to_fft(audio):
# Since tf.signal.fft applies FFT on the innermost dimension,
# we need to squeeze the dimensions and then expand them again
# after FFT
audio = tf.squeeze(audio, axis=-1)
fft = tf.signal.fft(
tf.cast(tf.complex(real=audio, imag=tf.zeros_like(audio)), tf.complex64)
)
fft = tf.expand_dims(fft, axis=-1)
# Return the absolute value of the first half of the FFT
# which represents the positive frequencies
return tf.math.abs(fft[:, : (audio.shape[1] // 2), :])
# Get the list of audio file paths along with their corresponding labels
class_names = os.listdir(DATASET_AUDIO_PATH)
print("Our class names: {}".format(class_names,))
audio_paths = []
labels = []
for label, name in enumerate(class_names):
print("Processing speaker {}".format(name,))
dir_path = Path(DATASET_AUDIO_PATH) / name
speaker_sample_paths = [
os.path.join(dir_path, filepath)
for filepath in os.listdir(dir_path)
if filepath.endswith(".wav")
]
audio_paths += speaker_sample_paths
labels += [label] * len(speaker_sample_paths)
print(
"Found {} files belonging to {} classes.".format(len(audio_paths), len(class_names))
)
# Shuffle
rng = np.random.RandomState(SHUFFLE_SEED)
rng.shuffle(audio_paths)
rng = np.random.RandomState(SHUFFLE_SEED)
rng.shuffle(labels)
# Split into training and validation
num_val_samples = int(VALID_SPLIT * len(audio_paths))
print("Using {} files for training.".format(len(audio_paths) - num_val_samples))
train_audio_paths = audio_paths[:-num_val_samples]
train_labels = labels[:-num_val_samples]
print("Using {} files for validation.".format(num_val_samples))
valid_audio_paths = audio_paths[-num_val_samples:]
valid_labels = labels[-num_val_samples:]
# Create 2 datasets, one for training and the other for validation
train_ds = paths_and_labels_to_dataset(train_audio_paths, train_labels)
train_ds = train_ds.shuffle(buffer_size=BATCH_SIZE * 8, seed=SHUFFLE_SEED).batch(
BATCH_SIZE
)
valid_ds = paths_and_labels_to_dataset(valid_audio_paths, valid_labels)
valid_ds = valid_ds.shuffle(buffer_size=32 * 8, seed=SHUFFLE_SEED).batch(32)
# Add noise to the training set
train_ds = train_ds.map(
lambda x, y: (add_noise(x, noises, scale=SCALE), y),
num_parallel_calls=tf.data.experimental.AUTOTUNE,
)
# Transform audio wave to the frequency domain using `audio_to_fft`
train_ds = train_ds.map(
lambda x, y: (audio_to_fft(x), y), num_parallel_calls=tf.data.experimental.AUTOTUNE
)
train_ds = train_ds.prefetch(tf.data.experimental.AUTOTUNE)
valid_ds = valid_ds.map(
lambda x, y: (audio_to_fft(x), y), num_parallel_calls=tf.data.experimental.AUTOTUNE
)
valid_ds = valid_ds.prefetch(tf.data.experimental.AUTOTUNE)
"""## Model Definition"""
from keras.layers import LSTM, Dense, Dropout, Flatten
from keras.models import Sequential
def build_model():
input_shape = (None, 8000, 1)
model = Sequential()
# model.add(LSTM(64, batch_input_shape=(None, 8000, 1), activation='tanh', return_sequences=True))
# model.add(LSTM(75, activation='tanh', return_sequences=True, dropout=0.2))
# model.add(LSTM(64, activation='tanh'))
# model.add(Dense(8, activation='softmax'))
model.add(LSTM(256, return_sequences=True, batch_input_shape=(None, 8000, 1), dropout=0.5))
model.add(LSTM(128, return_sequences=True))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(8, activation='softmax'))
return model
model = build_model()
model.summary()
#ADJUSTING LEARNING RATE
optimizer = keras.optimizers.Adam(lr=0.001)
# Compile the model using Adam's default learning rate
model.compile(
optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
# Add callbacks:
# 'EarlyStopping' to stop training when the model is not enhancing anymore
# 'ModelCheckPoint' to always keep the model that has the best val_accuracy
model_save_filename = "model.h5"
earlystopping_cb = keras.callbacks.EarlyStopping(patience=5, restore_best_weights=True)
mdlcheckpoint_cb = keras.callbacks.ModelCheckpoint(
model_save_filename, monitor="val_accuracy", save_best_only=True
)
train_ds
"""## Training"""
history = model.fit(
train_ds,
batch_size=BATCH_SIZE,
#steps_per_epoch=50,
epochs=EPOCHS,
validation_data=valid_ds,
validation_steps=5,
callbacks=[earlystopping_cb, mdlcheckpoint_cb],
)
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
"""## Evaluation"""
print(model.evaluate(train_ds))
print(model.evaluate(valid_ds))
"""###Final Accuracy after Hyperparameter Tuning: 75%
## Demonstration
"""
SAMPLES_TO_DISPLAY = 20
test_ds = paths_and_labels_to_dataset(valid_audio_paths, valid_labels)
test_ds = test_ds.shuffle(buffer_size=BATCH_SIZE * 8, seed=SHUFFLE_SEED).batch(
BATCH_SIZE
)
test_ds = test_ds.map(lambda x, y: (add_noise(x, noises, scale=SCALE), y))
for audios, labels in test_ds.take(1):
# Get the signal FFT
ffts = audio_to_fft(audios)
# Predict
y_pred = model.predict(ffts)
# Take random samples
rnd = np.random.randint(0, BATCH_SIZE, SAMPLES_TO_DISPLAY)
audios = audios.numpy()[rnd, :, :]
labels = labels.numpy()[rnd]
y_pred = np.argmax(y_pred, axis=-1)[rnd]
for index in range(SAMPLES_TO_DISPLAY):
# For every sample, print the true and predicted label
# as well as run the voice with the noise
print(
"Speaker:\33{} {}\33[0m\tPredicted:\33{} {}\33[0m".format(
"[92m" if labels[index] == y_pred[index] else "[91m",
class_names[labels[index]],
"[92m" if labels[index] == y_pred[index] else "[91m",
class_names[y_pred[index]],
)
)
display(Audio(audios[index, :, :].squeeze(), rate=SAMPLING_RATE))