-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathmerge_lora_and_quantize.py
85 lines (70 loc) · 3.47 KB
/
merge_lora_and_quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# -*- coding: utf-8 -*-
# time: 2023/6/7 13:44
# file: merge_lora_and_quantize.py
# author: zmfy
# email: [email protected]
import argparse
import os
from shutil import copyfile
import torch
from loguru import logger
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel, PeftConfig
def merge_lora(lora_path, device_map=None):
"""合并lora模型和base模型"""
if device_map is None:
device_map = {'': 'cpu'}
config = PeftConfig.from_pretrained(lora_path)
base_model = AutoModel.from_pretrained(config.base_model_name_or_path,
load_in_8bit=False,
trust_remote_code=True, torch_dtype=torch.float32,
device_map=device_map)
# check_weight = base_model.transformer.layers[0].attention.query_key_value.weight
# check_weight_old = check_weight.clone()
model = PeftModel.from_pretrained(base_model, lora_path, device_map=device_map)
model = model.merge_and_unload()
return model, config
def quantize(model, qbits=4):
"""量化模型,qbit为4或8"""
qmodel = model.quantize(qbits).half().cuda()
qmodel = qmodel.eval()
return qmodel
def save_model_and_tokenizer(model, base_model_path, output_path, remote_path):
"""保存模型和tokenizer相关配置"""
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
tokenizer.save_pretrained(output_path)
model.save_pretrained(output_path)
for fp in os.listdir(remote_path): # 拷贝remote_scripts中的官方脚本到最终输出的文件夹中,供load模型时使用
if fp.split('.')[-1] == 'py':
copyfile(os.path.join(remote_path, fp),
os.path.join(output_path, fp))
def main(lora_path, output_path, remote_path, qbits=4, device_map=None):
if device_map is None:
device_map = {'': 'cpu'}
merged_model, lora_config = merge_lora(lora_path, device_map)
if qbits in [4, 8]:
quantized_model = quantize(merged_model, qbits)
save_model_and_tokenizer(quantized_model, lora_config.base_model_name_or_path, output_path, remote_path)
logger.info(f'''Lora model和base model成功merge, 并量化为{qbits}bits, 保存在{output_path}''')
else:
save_model_and_tokenizer(merged_model, lora_config.base_model_name_or_path, output_path, remote_path)
logger.info(f'''Lora model和base model成功merge, 保存在{output_path}''')
def parse_args():
parser = argparse.ArgumentParser(description='ChatGLM-6B merge lora and quantize.')
parser.add_argument('--lora_path', type=str, required=True, help='QLoRA训练后保存模型的目录')
parser.add_argument('--output_path', type=str, default='/tmp/merged_qlora_model', help='最终保存合并,量化后的模型目录')
parser.add_argument('--qbits', type=int, default=4, help='模型量化位数')
parser.add_argument('--device', type=str, default='auto', help='device_map')
parser.add_argument('--remote_scripts_dir', type=str, default='remote_scripts/chatglm2-6b', help='官方脚本目录')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
if args.device != 'auto':
device_map = {'': args.device}
else:
device_map = 'auto'
main(lora_path=args.lora_path,
output_path=args.output_path,
remote_path=args.remote_scripts_dir,
qbits=args.qbits,
device_map=device_map)