-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdetect_mask_live.py
166 lines (117 loc) · 5.1 KB
/
detect_mask_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
# coding: utf-8
# ### Import Libraries
# In[9]:
# import the necessary packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
import os
# ### Upload Alarm Sound
# In[2]:
from pygame import mixer
mixer.init()
sound = mixer.Sound('mixkit-security-facility-breach-alarm-994.wav')
# ### Image Pre-Processing
# In[5]:
def mask_detection_prediction(frame, faceNet, maskNet):
# find the dimension of frame and construct a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
faceNet.setInput(blob)
detections = faceNet.forward()
# create a empty list which'll store list of faces,face location and prediction
faces = []
locs = []
preds = []
# loop over the detections
for i in range(0, detections.shape[2]):
# find the confidence or probability associated with the detection
confidence = detections[0, 0, i, 2]
# filter the strong detection [confidence > min confidence(let 0.5)]
if confidence > 0.5:
# find starting and ending coordinates of boundry box
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# make sure bounding boxes fall within the dimensions of the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
# append the face and bounding boxes to their respective lists
faces.append(face)
locs.append((startX, startY, endX, endY))
# only make a predictions if at least one face was detected
if len(faces) > 0:
# for faster inference we'll make batch predictions on *all*
# faces at the same time rather than one-by-one predictions
# in the above `for` loop
faces = np.array(faces, dtype="float32")
preds = maskNet.predict(faces, batch_size=32)
# return a 2-tuple of the face locations and their corresponding prediction
return (locs, preds)
# ### Load Caffe Model
# Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework that allows users to create image classification and image segmentation models. It is a Caffe model which is based on the Single Shot-Multibox Detector (SSD) and uses ResNet-10 architecture as its backbone. It was introduced post OpenCV 3.3 in its deep neural network module.
# In[6]:
# load our serialized face detector model from disk
from os.path import dirname, join
prototxtPath = join("face_detector", "deploy.prototxt")
weightsPath = join("face_detector", "res10_300x300_ssd_iter_140000.caffemodel")
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
maskNet = load_model("fmd_model.h5")
# ### Face Detection on Live Camera
# In[10]:
# initialize the video stream
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# detect faces in the frame and determine if they are wearing a
# face mask or not
(locs, preds) = mask_detection_prediction(frame, faceNet, maskNet)
# loop over the detected face locations and their corresponding
# locations
for (box, pred) in zip(locs, preds):
# unpack the bounding box and predictions
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
if mask>withoutMask:
label = "Mask"
color = (0, 255, 0)
print("Normal")
else:
label = "No Mask"
color = (0, 0, 255)
sound.play()
print("Alert!!!")
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output frame
cv2.putText(frame, label, (startX, startY - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()