-
Notifications
You must be signed in to change notification settings - Fork 2
/
chapter_1.2.lyx
5582 lines (4041 loc) · 90.2 KB
/
chapter_1.2.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{1}
\usepackage{graphicx}
\usepackage{pict2e}
\usepackage{graphpap}
\usepackage{color}
\usepackage{bm}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Basic Calculus
\end_layout
\begin_layout Standard
In this section we will cover basic rules for calculating derivatives and
simple integrals.
Along with introducing the different rules we will also introduce the derivativ
es of all the functions covered in the section before.
In order to keep the equations simple, we will from now on leave out the
brackets for functions like
\begin_inset Formula $\sin$
\end_inset
,
\begin_inset Formula $\cos$
\end_inset
,
\begin_inset Formula $\log$
\end_inset
, ...
as long as the argument of the function is clear from the context.
\end_layout
\begin_layout Subsection
Derivatives
\end_layout
\begin_layout Standard
The derivative
\begin_inset Formula $f'(x_{0})=\frac{df}{dx}(x_{0})$
\end_inset
(denoted with a ``
\begin_inset Formula $'$
\end_inset
'',
\begin_inset Formula $\frac{df}{dx}$
\end_inset
, or
\begin_inset Formula $\frac{d}{dx}f$
\end_inset
) of a function
\begin_inset Formula $f(x)$
\end_inset
has two intuitive meanings:
\end_layout
\begin_layout Enumerate
It measures the rate of change of a function at a certain location
\begin_inset Formula $x_{0}$
\end_inset
.
\end_layout
\begin_layout Enumerate
It is the slope of the line touching the function
\begin_inset Formula $f$
\end_inset
at a the point
\begin_inset Formula $(x_{0},f(x_{0}))$
\end_inset
.
This line is called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
tangent line
\end_layout
\end_inset
tangent line
\emph default
or simply
\emph on
tangent
\emph default
.
\end_layout
\begin_layout Standard
Using the first intuition,
\begin_inset Formula $f'(x_{0})$
\end_inset
is an approximation of how the function value of
\begin_inset Formula $f(x)$
\end_inset
changes when going from
\begin_inset Formula $x_{0}$
\end_inset
to
\begin_inset Formula $x_{0}+1$
\end_inset
.
If
\begin_inset Formula $f$
\end_inset
is a linear function, the approximation will be exact, that means
\begin_inset Formula $f$
\end_inset
will change exactly by
\begin_inset Formula $f'(x_{0})$
\end_inset
.
If
\begin_inset Formula $f$
\end_inset
is not linear we will make some error, but we still can use
\begin_inset Formula $f'(x)$
\end_inset
to construct the best linear approximation of
\begin_inset Formula $f$
\end_inset
at
\begin_inset Formula $x_{0}$
\end_inset
.
But first, we will start with an example of the exact case.
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
Note that the tangent at the graph of
\begin_inset Formula $f(x)$
\end_inset
involves an offset which makes the tangent an affine and not necessarily
a linear function.
There is some ambiguity here.
Often, people say
\begin_inset Quotes eld
\end_inset
linear function
\begin_inset Quotes erd
\end_inset
when the mean
\begin_inset Quotes eld
\end_inset
function of a line
\begin_inset Quotes erd
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Paragraph
Example
\end_layout
\begin_layout Standard
Consider the linear function
\begin_inset Formula $f(x)=3x$
\end_inset
.
According to the first intuition, the derivative
\begin_inset Formula $f'(x)$
\end_inset
is the rate of change of
\begin_inset Formula $f$
\end_inset
, i.e.
the change in the function value of
\begin_inset Formula $f$
\end_inset
divided by the change in the value of
\begin_inset Formula $x$
\end_inset
.
Consider two arbitrary points
\begin_inset Formula $x_{0}$
\end_inset
and
\begin_inset Formula $x_{1}$
\end_inset
.
The rate of change is then given by:
\begin_inset Formula
\begin{eqnarray*}
f'(x) & = & \frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}\\
& = & \frac{3x_{1}-3x_{0}}{x_{1}-x_{0}}\\
& = & \frac{3(x_{1}-x_{0})}{(x_{1}-x_{0})}\\
& = & 3.
\end{eqnarray*}
\end_inset
\begin_inset Float figure
placement h
wide false
sideways false
status collapsed
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{center}
\end_layout
\begin_layout Plain Layout
\backslash
setlength{
\backslash
unitlength}{0.04cm}
\end_layout
\begin_layout Plain Layout
\backslash
begin{picture}(200,200)
\end_layout
\begin_layout Plain Layout
\backslash
put(70,63){
\backslash
makebox(0,0){$
\backslash
underbrace{
\backslash
hspace{1cm}}_{x_1-x_0}$}}
\end_layout
\begin_layout Plain Layout
\backslash
put(82,69){
\backslash
rotatebox{90}{$
\backslash
underbrace{
\backslash
hspace{3cm}}_{f(x_1)-f(x_0)}$}}
\end_layout
\begin_layout Plain Layout
\backslash
put(57,69){
\backslash
line(1,0){25}}
\end_layout
\begin_layout Plain Layout
\backslash
put(82,69){
\backslash
line(0,1){78}}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
thicklines
\end_layout
\begin_layout Plain Layout
\backslash
put(50,50){
\backslash
vector(1,0){100}}
\end_layout
\begin_layout Plain Layout
\backslash
put(50,50){
\backslash
vector(0,1){100}}
\end_layout
\begin_layout Plain Layout
\backslash
put(34,0){
\backslash
line(1,3){50}}
\end_layout
\begin_layout Plain Layout
\backslash
put(150,55){
\backslash
makebox(0,0){$x$}}
\end_layout
\begin_layout Plain Layout
\backslash
put(55,150){
\backslash
makebox(0,0){$y$}}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
put(57,35){
\backslash
makebox(0,0){$f(x)$}}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
end{picture}
\end_layout
\begin_layout Plain Layout
\backslash
end{center}
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "fig:DerivativeLinearFunc"
\end_inset
Geometrical picture for calculating derivatives of linear functions.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Since any linear function can be written as
\begin_inset Formula $f(x)=ax$
\end_inset
, we just showed that the first derivative
\begin_inset Formula $f'(x)$
\end_inset
of a linear function does not depend on
\begin_inset Formula $x$
\end_inset
.
This means that it is the same everywhere.
This is what we expect intuitively from a line.
Secondly we verified the second intuition for linear functions.
The first derivative at a point
\begin_inset Formula $x_{0}$
\end_inset
is the slope of the tangent line of
\begin_inset Formula $f$
\end_inset
at
\begin_inset Formula $(x_{0},f(x_{0}))$
\end_inset
.
Since the tangent line is simply the linear function itself, the first
derivative
\begin_inset Formula $f'(x)$
\end_inset
is the slope of the linear function.
\end_layout
\begin_layout Standard
\begin_inset Note Comment
status open
\begin_layout Plain Layout
There is lot of technical stuff coming in the next section, like limits,
definitions of differentiability and continuity etc.
While it is very good to have it in the script, we should be very careful
not to load the lectures with it too much.
We should really cover calculus (except integration) in two lectures, so
it is much more important that people can simply do the calculations, and
not necessarily understand the theory behind it.
I know this is sad, but at the end of the day, we have to cover all of
mathematics in 10 lectures....
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
The situation changes when we consider arbitrary functions
\begin_inset Formula $f(x)$
\end_inset
.
In that case the value of the rate of change, given by the quotient
\begin_inset Formula $\frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}$
\end_inset
, will depend on the choices of
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{0}$
\end_inset
.
This raises the question how we could define the rate of change in a meaningful
way? The second intuition can help us here: In order to get the first derivativ
e at a point
\begin_inset Formula $x_{0}$
\end_inset
we approximate
\begin_inset Formula $f(x)$
\end_inset
at
\begin_inset Formula $x_{0}$
\end_inset
with a line and define the first derivative to be its slope.
Since we are merely interested in computing the slope of that line, we
do not need to compute the full line equation but start with the slope
right away.
Remember, given a line
\begin_inset Formula $g(x)=ax+t$
\end_inset
, we can compute its slope via
\begin_inset Formula $\frac{g(x_{1})-g(x_{0})}{(x_{1}-x_{0})}=\frac{ax_{1}+t-ax_{0}-t}{(x_{1}-x_{0})}=a$
\end_inset
where
\begin_inset Formula $x_{1}$
\end_inset
and
\begin_inset Formula $x_{0}$
\end_inset
are two arbitrary points.
Now imagine we have a line
\begin_inset Formula $g(x)=ax+t$
\end_inset
that contains the two points
\begin_inset Formula $(x_{0},f(x_{0}))$
\end_inset
and
\begin_inset Formula $(x_{1},f(x_{1}))$
\end_inset
(see Figure
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:DerivativeArbrFunc"
\end_inset
).
In order to compute its slope we do not need the full line equation.
Instead we can simply use the quotient from above and compute
\begin_inset Formula
\begin{eqnarray*}
a & = & \frac{g(x_{1})-g(x_{0})}{x_{1}-x_{0}}\\
& = & \frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}.
\end{eqnarray*}
\end_inset
The slope
\begin_inset Formula $a$
\end_inset
of this line is not yet the first derivative since
\begin_inset Formula $g$
\end_inset
contains
\begin_inset Formula $(x_{0},f(x_{0}))$
\end_inset
\emph on
and
\emph default
\begin_inset Formula $(x_{1},f(x_{1}))$
\end_inset
.
This means, that (in most cases) it will intersect with
\begin_inset Formula $f$
\end_inset
and not
\emph on
touch
\emph default
it at
\begin_inset Formula $(x_{0},f(x_{0}))$
\end_inset
.
However, we can achieve this goal by moving
\begin_inset Formula $x_{1}$
\end_inset
close to
\begin_inset Formula $x_{0}$
\end_inset
.
Once it is infinitely, called
\emph on
infinitesimally
\emph default
, close to
\begin_inset Formula $x_{0}$
\end_inset
,
\begin_inset Formula $a=\frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}$
\end_inset
will be the slope of the tangent line, i.e.
\begin_inset Formula $a=f'(x_{0})$
\end_inset
.
Mathematically this is expressed in terms of a limit.
We do not go into the details of limits here, but merely demonstrate, how
the derivative of a function
\begin_inset Formula $f$
\end_inset
at
\begin_inset Formula $x_{0}$
\end_inset
is defined.
The rate of change with a infinitesimal close point
\begin_inset Formula $x_{1}=x_{0}+h$
\end_inset
can be written in terms of limits as
\begin_inset Formula
\begin{eqnarray*}
f'(x) & = & \lim_{h\rightarrow0}\frac{f(\overbrace{x_{0}+h}^{=x_{1}})-f(x_{0})}{\underbrace{h}_{=x_{1}-x_{0}}}.
\end{eqnarray*}
\end_inset
The ''
\begin_inset Formula $\lim$
\end_inset
'' expresses that we let
\begin_inset Formula $h$
\end_inset
come infinitesimally close to zero and therefore
\begin_inset Formula $x_{1}=x_{0}+h$
\end_inset
infinitesimally close to
\begin_inset Formula $x_{0}$
\end_inset
.
The expression
\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(x_{0}+h)-f(x_{0})}{h}$
\end_inset
is called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
differential quotient
\end_layout
\end_inset
differential quotient
\emph default
of
\begin_inset Formula $f$
\end_inset
.
Note that, in order to obtain a unique notion of a derivative at a point
\begin_inset Formula $x_{0}$
\end_inset
, the direction from which
\begin_inset Formula $x_{1}=x_{0}+h$
\end_inset
approaches
\begin_inset Formula $x_{0}$
\end_inset
should not matter.
This means that
\begin_inset Formula $h$
\end_inset
could be negative (
\begin_inset Formula $x_{1}$
\end_inset
approaches
\begin_inset Formula $x_{0}$
\end_inset
from the left) or positive (
\begin_inset Formula $x_{1}$
\end_inset
approaches
\begin_inset Formula $x_{0}$
\end_inset
from the right).
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement h
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{center}
\end_layout
\begin_layout Plain Layout
\backslash
setlength{
\backslash
unitlength}{0.04cm}
\end_layout
\begin_layout Plain Layout
\backslash
begin{picture}(200,200)
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
%
\backslash
put(70,63){
\backslash
makebox(0,0){$
\backslash
underbrace{
\backslash
hspace{1cm}}_{x_1-x_0}$}}
\end_layout
\begin_layout Plain Layout
%
\backslash
put(82,69){
\backslash
rotatebox{90}{$
\backslash
underbrace{
\backslash
hspace{3cm}}_{f(x_1)-f(x_0)}$}}
\end_layout
\begin_layout Plain Layout
%
\backslash
put(57,69){
\backslash
line(1,0){25}}
\end_layout
\begin_layout Plain Layout
%
\backslash
put(82,69){
\backslash
line(0,1){78}}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
put(65,62){
\backslash
line(4,6){90}}
\end_layout
\begin_layout Plain Layout
\backslash
put(108,184){
\backslash
makebox(0,0){$
\backslash
overbrace{
\backslash
hspace{2.6cm}}^{h_1}$}}
\end_layout
\begin_layout Plain Layout
\backslash
put(61,78){
\backslash
rotatebox{90}{$
\backslash
overbrace{
\backslash
hspace{4cm}}^{f(x_0+h_1)-f(x_0)}$}}
\end_layout
\begin_layout Plain Layout
\backslash
put(75,76){
\backslash
line(0,1){102}}
\end_layout
\begin_layout Plain Layout
\backslash
put(142,178){
\backslash
line(-1,0){67}}
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
put(65,63){
\backslash
line(3,4){90}}
\end_layout
\begin_layout Plain Layout
\backslash
put(102,70){
\backslash
makebox(0,0){$
\backslash
underbrace{
\backslash
hspace{2.15cm}}_{h_2}$}}
\end_layout
\begin_layout Plain Layout
\backslash
put(129,76.5){
\backslash
rotatebox{90}{$
\backslash
underbrace{
\backslash
hspace{2.85cm}}_{f(x_0+h_2)-f(x_0)}$}}
\end_layout
\begin_layout Plain Layout
\backslash