-
Notifications
You must be signed in to change notification settings - Fork 2
/
chapter_1.4.lyx
1065 lines (808 loc) · 19.8 KB
/
chapter_1.4.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass scrbook
\begin_preamble
\setcounter{chapter}{1}
\usepackage{graphicx}
\usepackage{pict2e}
\usepackage{graphpap}
\usepackage{color}
\usepackage{bm}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Derivatives in
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sec:multivariate_derivatives"
\end_inset
\end_layout
\begin_layout Subsection
Partial Derivatives
\end_layout
\begin_layout Standard
\series bold
Example (Least Squares)
\end_layout
\begin_layout Standard
Consider the following problem: We are given a number of noisy measurements
\begin_inset Formula $y_{1},...,y_{m}\in\mathbb{R}$
\end_inset
that we measured at corresponding base points
\begin_inset Formula $x_{1},...,x_{m}\in\mathbb{R}$
\end_inset
.
Now we want to model the
\begin_inset Formula $y_{i}$
\end_inset
as an affine function of
\begin_inset Formula $x_{i}$
\end_inset
, i.e.
we want to find a line
\begin_inset Formula $g(x)=wx+b$
\end_inset
such that
\begin_inset Formula $y_{i}\approx g(x_{i})$
\end_inset
.
Since your measurements are noisy, there is probably not a line that contains
all points
\begin_inset Formula $(x_{i},y_{i})$
\end_inset
.
From all the other lines that match the points more or less well we have
to choose one that matches our points
\begin_inset Formula $(x_{i},y_{i})$
\end_inset
best.
The meaning of ''matching best'' is usually expressed by means of a loss
function.
The most common choice is the sum of the squared deviations from that line
\begin_inset Formula
\begin{eqnarray}
\ell(w,b) & = & \sum_{i=1}^{m}\left(y_{i}-(wx_{i}+b)\right)².\label{eq:squared_loss}
\end{eqnarray}
\end_inset
This
\emph on
squared loss
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
squared loss
\end_layout
\end_inset
\emph default
is a function of the line parameters
\begin_inset Formula $w$
\end_inset
and
\begin_inset Formula $b$
\end_inset
.
The approach of finding a line by minimizing (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:squared_loss"
\end_inset
) is known as
\emph on
least squares
\emph default
and goes back to Gauß, who became famous for finding a lost comet with
this approach.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
Our loss is a function of two parameters, i.e.
\begin_inset Formula $\ell:\mathbb{R}²\rightarrow\mathbb{R}$
\end_inset
.
So far, we only looked at finding the optima of functions
\begin_inset Formula $f:\mathbb{R}\rightarrow\mathbb{R}$
\end_inset
.
However, there are only a few changes in the rules for taking derivatives
or finding optima when dealing with
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
multivariate functions
\end_layout
\end_inset
multivariate functions
\emph default
\begin_inset Formula $f:\mathbb{R}^{n}\rightarrow\mathbb{R}$
\end_inset
.
\end_layout
\begin_layout Standard
The first change is obvious.
Since our function has more than one variable, we must take the derivative
with respect to more than one variable now.
This kind of derivative is know as
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
partial derivative
\end_layout
\end_inset
partial derivative
\emph default
.
\end_layout
\begin_layout Subsubsection*
Definition (Partial Derivative):
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $f:\mathbb{R}^{n}\rightarrow\mathbb{R},\,(x_{1},...,x_{n})\mapsto f(x_{1},...,x_{n})$
\end_inset
be a multivariate function.
The partial derivative with respect to a
\begin_inset Formula $x_{i}$
\end_inset
is taking the normal derivative of
\begin_inset Formula $f$
\end_inset
with respect to
\begin_inset Formula $x_{i}$
\end_inset
while treating all other
\begin_inset Formula $x_{j}$
\end_inset
,
\begin_inset Formula $j\not=i$
\end_inset
as constants.
The partial derivative with respect to
\begin_inset Formula $x_{i}$
\end_inset
at the point
\begin_inset Formula $\mathbf{z}=(z_{1},...,z_{n})$
\end_inset
is denotes with the symbol
\begin_inset Formula $\frac{\partial f}{\partial x_{i}}(\mathbf{z})$
\end_inset
,
\begin_inset Formula $\frac{\partial}{\partial x_{i}}f(\mathbf{z})$
\end_inset
or sometimes
\begin_inset Formula $\frac{\partial}{\partial x_{i}}|_{\mathbf{z}}f$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Standard
When dealing with a function of
\begin_inset Formula $n$
\end_inset
variables, we can compute
\begin_inset Formula $n$
\end_inset
partial derivatives.
Computing all partial derivatives and assembling them in a vector gives
us the so called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
gradient
\end_layout
\end_inset
gradient.
\end_layout
\begin_layout Subsection
Gradient and Optima in
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
\end_layout
\begin_layout Subsubsection*
Definition (Gradient):
\end_layout
\begin_layout Standard
The
\begin_inset Formula $n$
\end_inset
-dimensional vector containing all partial derivatives of a function
\begin_inset Formula $f:\mathbb{R}^{n}\rightarrow\mathbb{R}$
\end_inset
at the position
\begin_inset Formula $\mathbf{z}$
\end_inset
\begin_inset Formula
\begin{eqnarray*}
\nabla f(\mathbf{z}) & = & \left(\frac{\partial f}{\partial x_{1}}(\mathbf{z}),...,\frac{\partial f}{\partial x_{n}}(\mathbf{z})\right)
\end{eqnarray*}
\end_inset
is called gradient of
\begin_inset Formula $f$
\end_inset
at
\begin_inset Formula $\mathbf{z}$
\end_inset
.
It is denoted with
\begin_inset Formula $\nabla f(\mathbf{z})$
\end_inset
or sometimes
\begin_inset Formula $\nabla|_{\mathbf{z}}f$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset
\end_layout
\begin_layout Subsubsection*
\series medium
Similarly to finding optima of
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
univariate functions
\end_layout
\end_inset
univariate functions
\emph default
\begin_inset Formula $f:\mathbb{R}\rightarrow\mathbb{R}$
\end_inset
, where
\begin_inset Formula $f'(x)=0$
\end_inset
was a necessary condition for
\begin_inset Formula $x$
\end_inset
being an optimum, a necessary condition for
\begin_inset Formula $\mathbf{x}=(x_{1},...,x_{n})$
\end_inset
being an optimum is that all partial derivatives vanish, i.e.
\begin_inset Formula $\nabla f(\mathbf{x})=(0,...,0)$
\end_inset
.
\end_layout
\begin_layout Standard
\series bold
Remark (Gradient Descent)
\end_layout
\begin_layout Standard
The gradient of a function
\begin_inset Formula $f$
\end_inset
at a point
\begin_inset Formula $\mathbf{x}$
\end_inset
has a remarkable property.
It always points into the direction of steepest ascent of the function
\begin_inset Formula $f$
\end_inset
at
\begin_inset Formula $\mathbf{x}$
\end_inset
.
This property is used in the so called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
gradient descent
\end_layout
\end_inset
gradient descent
\emph default
algorithm.
Starting at a random position
\begin_inset Formula $\mathbf{x}^{(0)}$
\end_inset
, gradient descent computes the gradient
\begin_inset Formula $\nabla f(\mathbf{x}^{(0)})$
\end_inset
of
\begin_inset Formula $f$
\end_inset
at
\begin_inset Formula $\mathbf{x}^{(0)}$
\end_inset
and makes a small step in its direction (or in the opposite direction,
when minimizing a function).
Let us assume that we want to minimize a function (for maximizing, the
gradient is added and not subtracted).
We start at a random position
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\mathbf{x}^{(0)}$
\end_inset
, compute the gradient
\begin_inset Formula $\nabla f(\mathbf{x}^{(0)})$
\end_inset
and obtain a new value for
\begin_inset Formula $\mathbf{x}$
\end_inset
via
\begin_inset Formula $\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\alpha\nabla f(\mathbf{x}^{(0)})$
\end_inset
.
At
\begin_inset Formula $\mathbf{x}^{(1)}$
\end_inset
, we repeat this procedure.
By that we obtain the general update rule
\begin_inset Formula
\begin{eqnarray*}
\mathbf{x}^{(t+1)} & = & \mathbf{x}^{(t)}-\alpha\nabla f(\mathbf{x}^{(t)}).
\end{eqnarray*}
\end_inset
The art, somehow, is to choose the scaling constant
\begin_inset Formula $\alpha$
\end_inset
.
This is usually done by
\family default
\series default
\shape default
\size default
\emph on
\bar default
\noun default
\color inherit
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
line search
\end_layout
\end_inset
line search
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
algorithms, that we do not describe here.
However, choosing a small constant value for
\begin_inset Formula $\alpha$
\end_inset
also works for simple examples.
The procedure is repeated until the gradient becomes zero, i.e.
\begin_inset Formula $\nabla f(\mathbf{x}^{(t)})=(0,...,0)$
\end_inset
.
Gradient descent does not yield a global minimum.
It simply gives you the local minimum that you reach when running down
the surface defined by the function
\begin_inset Formula $f$
\end_inset
starting at
\begin_inset Formula $\mathbf{x}^{(0)}$
\end_inset
.
Intuitively, you can imagine gradient descent as a small ball, that rolls
down a surface until it gets stuck in the next valley.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
\series bold
Example (Least Squares cont'd)
\end_layout
\begin_layout Standard
Let us look again at our least squares problem.
Since we want to find the minimum of
\begin_inset Formula
\begin{eqnarray*}
\ell(w,b) & = & \sum_{i=1}^{m}\left(y_{i}-(wx_{i}+b)\right)²,
\end{eqnarray*}
\end_inset
we need to compute the gradient
\begin_inset Formula $\nabla\ell(w,b)$
\end_inset
, set it to zero and solve for
\begin_inset Formula $w$
\end_inset
and
\begin_inset Formula $b$
\end_inset
.
\begin_inset Formula
\begin{eqnarray*}
\frac{\partial\ell}{\partial w} & = & \frac{\partial}{\partial w}\sum_{i=1}^{m}\left(y_{i}-(wx_{i}+b)\right)²\\
& \stackrel{\mbox{Summation Rule}}{=} & \sum_{i=1}^{m}\frac{\partial}{\partial w}\left(y_{i}-(wx_{i}+b)\right)²\\
& \stackrel{\mbox{Chain Rule}}{=} & \sum_{i=1}^{m}2\left(y_{i}-(wx_{i}+b)\right)\cdot\frac{\partial}{\partial w}\left(y_{i}-(wx_{i}+b)\right)\\
& = & \sum_{i=1}^{m}2\left(y_{i}-(wx_{i}+b)\right)\cdot-x_{i}\\
& = & 2\sum_{i=1}^{m}wx_{i}²+bx_{i}-x_{i}y_{i}\\
\frac{\partial\ell}{\partial b} & = & \frac{\partial}{\partial b}\sum_{i=1}^{m}\left(y_{i}-(wx_{i}+b)\right)²\\
& = & \sum_{i=1}^{m}2\left(y_{i}-(wx_{i}+b)\right)\cdot\frac{\partial}{\partial b}\left(y_{i}-(wx_{i}+b)\right)\\
& = & \sum_{i=1}^{m}2\left(y_{i}-(wx_{i}+b)\right)\cdot-1\\
& = & \sum_{i=1}^{m}2\left(wx_{i}+b-y_{i}\right).
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
If we denote the mean of
\begin_inset Formula $x_{i}$
\end_inset
with
\begin_inset Formula $\mu_{x}=\frac{1}{m}\sum_{i=1}^{m}x_{i}$
\end_inset
, the mean over
\begin_inset Formula $y_{i}$
\end_inset
with
\begin_inset Formula $\mu_{y}=\frac{1}{m}\sum_{i=1}^{m}y_{i}$
\end_inset
, and splitting the sums, we can simplify the equations to
\begin_inset Formula
\begin{eqnarray*}
\frac{\partial\ell}{\partial w} & = & 2\left(w\sum_{i=1}^{m}x_{i}²+bm\mu_{x}-\sum_{i=1}^{m}x_{i}y_{i}\right)\\
\frac{\partial\ell}{\partial b} & = & 2\left(wm\mu_{x}+mb-m\mu_{y}\right)
\end{eqnarray*}
\end_inset
Setting
\begin_inset Formula $\frac{\partial\ell}{\partial b}=0$
\end_inset
and solving for
\begin_inset Formula $b$
\end_inset
then yields
\begin_inset Formula
\begin{eqnarray*}
2\left(wm\mu_{x}+mb-m\mu_{y}\right) & = & 0\\
\Leftrightarrow b & = & \mu_{y}-w\mu_{x}.
\end{eqnarray*}
\end_inset
This equation has a simple interpretation.
\begin_inset Formula $b$
\end_inset
is the mean deviation of
\begin_inset Formula $y$
\end_inset
from our line
\begin_inset Formula $g(x)=wx$
\end_inset
without offset
\begin_inset Formula $b$
\end_inset
.
\end_layout
\begin_layout Standard
Plugging that into
\begin_inset Formula $\frac{\partial\ell}{\partial w}$
\end_inset
yields
\begin_inset Formula
\begin{eqnarray*}
2\left(w\sum_{i=1}^{m}x_{i}²+bm\mu_{x}-\sum_{i=1}^{m}x_{i}y_{i}\right) & = & 2\left(w\sum_{i=1}^{m}x_{i}²+m\mu_{x}(\mu_{y}-w\mu_{x})-\sum_{i=1}^{m}x_{i}y_{i}\right)\\
& = & 2\left(w\sum_{i=1}^{m}x_{i}²+m\mu_{x}\mu_{y}-wm\mu_{x}^{2}-\sum_{i=1}^{m}x_{i}y_{i}\right).
\end{eqnarray*}
\end_inset
If we remember that the variance
\begin_inset Formula $\sigma_{x}²$
\end_inset
of the
\begin_inset Formula $x_{i}$
\end_inset
can be computed via
\begin_inset Formula $\sigma_{x}²=\frac{1}{m}\sum_{i=1}^{m}x_{i}²-\mu_{x}²$
\end_inset
and if we denote the
\emph on
covariance
\emph default
between
\begin_inset Formula $x$
\end_inset
and
\begin_inset Formula $y$
\end_inset
with
\begin_inset Formula $\sigma{}_{xy}=\frac{1}{m}\sum_{i=1}^{m}x_{i}y_{i}-\mu_{x}\mu_{y}$
\end_inset
, we can simplify the equation to
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
2\left(w\sum_{i=1}^{m}x_{i}²+m\mu_{x}\mu_{y}-wm\mu_{x}^{2}-\sum_{i=1}^{m}x_{i}y_{i}\right) & = & 2\left(wm\sigma²_{x}-m\sigma{}_{xy}\right).
\end{eqnarray*}
\end_inset
Setting that equation to zero and solving for
\begin_inset Formula $w$
\end_inset
yields
\begin_inset Formula
\begin{eqnarray*}
2\left(wm\sigma²_{x}-m\sigma{}_{xy}\right) & = & 0\\
\Leftrightarrow w & = & \frac{\sigma{}_{xy}}{\sigma²_{x}}.
\end{eqnarray*}
\end_inset
The term
\begin_inset Formula $\frac{\sigma{}_{xy}}{\sigma²_{x}}$
\end_inset
has again a simple interpretation: It is the correlation coefficient
\begin_inset Formula $\rho=\frac{\sigma_{xy}}{\sqrt{\sigma_{x}²}\sqrt{\sigma_{y}²}}$
\end_inset
times the the standard deviation
\begin_inset Formula $\sigma_{y}=\sqrt{\sigma_{y}²}$
\end_inset
of the
\begin_inset Formula $y_{i}$
\end_inset
divided by the standard deviation of the
\begin_inset Formula $x_{i}$
\end_inset
, i.e.
\begin_inset Formula $w=\rho\frac{\sigma_{y}}{\sigma_{x}}$
\end_inset
.
Plugging that into the equation for
\begin_inset Formula $b$
\end_inset
yields
\begin_inset Formula
\begin{eqnarray*}
b & = & \mu_{y}-w\mu_{x}\\
& = & \mu_{y}-\rho\frac{\sigma_{y}}{\sigma_{x}}\mu_{x}
\end{eqnarray*}
\end_inset
and we are left with the line equation
\begin_inset Formula
\begin{eqnarray*}
g(x) & = & wx+b\\
& = & \rho\frac{\sigma_{y}}{\sigma_{x}}x+\mu_{y}-\rho\frac{\sigma_{y}}{\sigma_{x}}\mu_{x}\\
& = & \rho\frac{\sigma_{y}}{\sigma_{x}}(x-\mu_{x})+\mu_{y}.
\end{eqnarray*}
\end_inset
If you think about it, this equation makes perfect sense.
In order to obtain a estimate for the associated
\begin_inset Formula $y$
\end_inset
for a given
\begin_inset Formula $x$
\end_inset
, we first subtract the mean from
\begin_inset Formula $x$
\end_inset
as estimated by our sample, normalize its variance to one by dividing by
the standard deviation, multiply the result with the correlation coefficient
\begin_inset Formula $\rho$
\end_inset
, multiply the result with the standard deviation of
\begin_inset Formula $y$
\end_inset
to get the scale right and finally add the mean
\begin_inset Formula $\mu_{y}$
\end_inset
of
\begin_inset Formula $y$
\end_inset
.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\lhd$
\end_inset
\end_layout
\begin_layout Standard
Unfortunately, we cannot check if the values for
\begin_inset Formula $w$
\end_inset
and
\begin_inset Formula $b$
\end_inset
really correspond to a minimum, yet.
In order to do so we would need the concept of matrices and eigenvalues.
Just for the sake of completeness, we quickly mention how to generalize
the sufficient conditions for a minimum and a maximum to more than one
dimension.
\end_layout
\begin_layout Standard
The second derivative of a function
\begin_inset Formula $f:\mathbb{R}^{n}\rightarrow\mathbb{R}$
\end_inset
is a
\begin_inset Formula $\mathbb{R}^{n\times n}$
\end_inset
matrix.
This is not surprising, since the first derivative with respect to all
variables was a vector (the gradient), or a function from
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
into
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
.
Taking the derivatives with respect to all parameters again, yields a matrix.
This matrix is called the
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
Hessian matrix
\end_layout
\end_inset
Hessian matrix
\emph default
or simply the
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
Hessian
\end_layout
\end_inset
Hessian
\emph default
.
\end_layout
\begin_layout Subsubsection*
Definition (Hessian):
\end_layout
\begin_layout Standard
The
\begin_inset Formula $\mathbb{R}^{n\times n}$
\end_inset
matrix
\begin_inset Formula $H$
\end_inset
containing all the second derivatives of a function
\begin_inset Formula $f:\mathbb{R}^{n}\rightarrow\mathbb{R}$
\end_inset
at a position
\begin_inset Formula $\mathbf{z}$
\end_inset
\begin_inset Formula
\begin{eqnarray*}
H(\mathbf{z}) & = & \left(\begin{array}{ccccc}
\frac{\partial²f}{\partial x_{1}²}(\mathbf{z}) & \frac{\partial²f}{\partial x_{1}\partial x_{2}}(\mathbf{z})\\
\frac{\partial²f}{\partial x_{1}\partial x_{2}}(\mathbf{z})\\
\\
& & & & \frac{\partial²f}{\partial x_{n-1}\partial x_{n}}(\mathbf{z})\\
& & & \frac{\partial²f}{\partial x_{n-1}\partial x_{n}}(\mathbf{z}) & \frac{\partial²f}{\partial x_{n}²}(\mathbf{z})
\end{array}\right)
\end{eqnarray*}
\end_inset
is called
\emph on
\begin_inset Index idx
status collapsed
\begin_layout Plain Layout
Hessian
\end_layout
\end_inset
Hessian.
\end_layout
\begin_layout Standard
\align right
\begin_inset Formula $\Diamond$
\end_inset