-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path06_Additional_Analysis.jl
634 lines (496 loc) · 21 KB
/
06_Additional_Analysis.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
### A Pluto.jl notebook ###
# v0.20.4
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
#! format: off
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
#! format: on
end
# ╔═╡ b4270d0f-a316-4781-a340-f6ec54f35a1b
begin
using Pkg
Pkg.activate("../.")
using PlutoUI
end
# ╔═╡ 535c0573-63d1-464a-9780-3bd0e40e15d2
begin
using DataFrames
using CSV
using Distributions
using Plots
using Discretizers
using Random
using BayesNets
using JLD2
plotlyjs()
if !@isdefined HW2_Support_Code
include("support_code/02_hw_support_code.jl")
end
if !@isdefined HW3_Support_Code
include("support_code/03_hw_support_code.jl")
end
if !@isdefined HW4_Support_Code
include("support_code/04_hw_support_code.jl")
end
end
# ╔═╡ e2ad2cdf-c8ab-4e35-b6c0-724ebe9ec32b
begin
using Base64
include_string(@__MODULE__, String(base64decode("IyAqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKgojIERFQ09ESU5HIFRISVMgSVMgQSBWSU9MQVRJT04gT0YgVEhFIEhPTk9SIENPREUKIyAqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKgoKZnVuY3Rpb24gZ2V0X21pc3NfZGlzdGFuY2VzKGVuY291bnRlcl9zZXQ6OlZlY3RvcntFbmNvdW50ZXJ9KQoJbWlzc19kaXN0YW5jZXMgPSBbZ2V0X21pbl9zZXBhcmF0aW9uKGVuYykgZm9yIGVuYyBpbiBlbmNvdW50ZXJfc2V0XQoJcmV0dXJuIG1pc3NfZGlzdGFuY2VzCmVuZAoKZnVuY3Rpb24gaXNfbm1hY19zdGF0ZShlbmNfc3RhdGU6OkVuY291bnRlclN0YXRlKQkKCXgxID0gZW5jX3N0YXRlLnBsYW5lMS54Cgl5MSA9IGVuY19zdGF0ZS5wbGFuZTEueQoJeDIgPSBlbmNfc3RhdGUucGxhbmUyLngKCXkyID0gZW5jX3N0YXRlLnBsYW5lMi55CglubWFjID0gYWJzKHgxIC0geDIpIDwgNTAwICogMC4zMDQ4ICYmIGFicyh5MSAtIHkyKSA8IDEwMCAqIDAuMzA0OAoJcmV0dXJuIG5tYWMKZW5kCgpmdW5jdGlvbiBpc19ubWFjKGVuYzo6RW5jb3VudGVyKQoJZm9yIGVuY19zdGF0ZSBpbiBlbmMKICAgICAgICBpZiBpc19ubWFjX3N0YXRlKGVuY19zdGF0ZSkKICAgICAgICAgICAgcmV0dXJuIHRydWUKICAgICAgICBlbmQKICAgIGVuZAogICAgcmV0dXJuIGZhbHNlCmVuZAoKZnVuY3Rpb24gX19zaW1wbGVfY2FzKGVuY19zdGF0ZTo6RW5jb3VudGVyU3RhdGUpCglpZiBlbmNfc3RhdGUucGxhbmUxLnkgLSBlbmNfc3RhdGUucGxhbmUyLnkgPiAwCgkJcmV0dXJuIDpDTElNQgogICAgZW5kCiAgICByZXR1cm4gOkRFU0NFTkQKZW5kCgpmdW5jdGlvbiBfX3Jldl9zaW1wbGVfY2FzKGVuY19zdGF0ZTo6RW5jb3VudGVyU3RhdGUpCglpZiBlbmNfc3RhdGUucGxhbmUxLnkgLSBlbmNfc3RhdGUucGxhbmUyLnkgPiAwCgkJcmV0dXJuIDpERVNDRU5ECiAgICBlbmQKICAgIHJldHVybiA6Q0xJTUIKZW5kCgpmdW5jdGlvbiBfX2NvbnN0cmFpbmVkX3NpbXBsZV9DQVMoZW5jX3N0YXRlOjpFbmNvdW50ZXJTdGF0ZSwgdGhyZXNob2xkX2Rpc3Q6OkZsb2F0NjQpCiAgICBpZiBnZXRfc2VwYXJhdGlvbihlbmNfc3RhdGUpIDwgdGhyZXNob2xkX2Rpc3QKICAgICAgICByZXR1cm4gX19zaW1wbGVfY2FzKGVuY19zdGF0ZSkKICAgIGVuZAogICAgcmV0dXJuIDpDT0MKZW5kCg==")))
get_miss_distances = get_miss_distances
is_nmac_state = is_nmac_state
is_name = is_nmac
md""
end
# ╔═╡ f3d1a84c-5113-11eb-08a2-938ec13fdcbc
md"""
# Assignment 6: Additional Analysis
v2025.0.1
"""
# ╔═╡ 0cbbb521-705d-4bff-9e9d-a4d8608df465
md"## Notebook Setup"
# ╔═╡ 298d750e-5114-11eb-3a5b-e72e7dba0b29
md"""
## Problem Description
In this assignment, you will look back at the collision avoidance system you designed in the previous assignment and perform additional analysis.
"""
# ╔═╡ 0ef3bcb4-5115-11eb-385d-dfcaa74621f6
md"""
## ‼️ What is Turned In
1. Export this notebook as a PDF ([how-to in the documentation](https://plutojl.org/en/docs/export-pdf/))
2. Upload the PDF to [Gradescope](https://www.gradescope.com/)
3. Tag your pages correctly on Gradescope:
- Milestone One: Tag the comments for each selected encounter
- Milestone Two: Tag the discussions
**Do not use any external code or Julia packages other than those used in the class materials.**
"""
# ╔═╡ 4b41c514-5115-11eb-3283-d1daec5d0d8e
md"""
## Available Tools and Supporting Code
All of the provided code for Coding Assignments 02, 03, and 04 are also included here
As a reminder reminder, here is the `AircraftState` and `EncounterState` types, which have been defined and loaded in for you:
```julia
struct AircraftState
x::Float64 # horizontal position [m]
y::Float64 # veritcal position [m]
u::Float64 # horizontal speed [m/s]
v::Float64 # vertical speed [m/s]
end
mutable struct EncounterState
plane1::AircraftState
plane2::AircraftState
t::Float64
end
```
"""
# ╔═╡ e5665562-7a0b-4ea3-a8e5-32ad154d6527
md"""
# 0️⃣ Milestone Zero: `my_cas` from Last Assignment
We are analyzing the collision avoidance system you implemented in Coding Assignment 5: CAS Design.
"""
# ╔═╡ 66d289f8-5115-11eb-31b8-b53a152f8751
md"""
Let's copy in and resimulate your CAS from the previous assigment so that we have some results to analyze.
"""
# ╔═╡ 88e155d8-5115-11eb-02ce-ffb1001a025d
md"""
## 💻 Task: Reimplement `my_cas`
Reimplement your `my_cas` function from last assignment here. You can copy and paste the code from the last assignment. Make sure you bring over any supporting functions you implemented as well!
"""
# ╔═╡ 9ab41aa2-5115-11eb-0e52-cfb017fa7f30
function my_cas(enc_state::EncounterState)
advisory = :COC # Change this with your code
# STUDENT CODE START
# STUDENT CODE END
return advisory
end
# ╔═╡ 378415a7-606f-4840-bb00-cc3fa21be250
md"""
## Simulating Results
Now we will collect an arrow of results from `simulate_encounter`. Remember that `simulate_encounter` returns a `Tuple` where the first entry is the simulated `Encounter` and the second entry is a `Vector` of the advisories issues.
"""
# ╔═╡ a3c2e22c-5115-11eb-0094-f9c26abc6eec
sim_results = [simulate_encounter(enc, my_cas) for enc in encounter_set];
# ╔═╡ ac1a33a0-5115-11eb-04e6-473cd31d90e0
md"""
# 1️⃣ Milestone One: Qualitative Analysis
Visual analysis is an important tool for understanding complex systems like collision avoidance. While aggregate metrics like NMAC rates provide high-level performance measures, plotting individual encounters helps reveal specific behaviors, edge cases, and failure modes that may be masked in the statistics.
Your first task is to select three "interesting" encounters from your simulated dataset and analyze them in detail. An "interesting" encounter could be:
- One that demonstrates your system working effectively to prevent a collision
- A case where your system generates unnecessary alerts or exhibits unexpected behavior
- An encounter that results in an NMAC despite the system's intervention
- A scenario that reveals limitations or assumptions in your approach
For each encounter you select, note the encounter index number for reference and comment on what is happening and why you deemed it "interesting". Please discuss whether the outcome is desirable and what it reveals about your system.
Below we've provided plots of all simulated encounters and plots of all NMAC encounters --- use the sliders to browse through them and identify cases worth examining more closely. Look for encounters that illustrate different aspects of your system's behavior or highlight areas for potential improvement.
"""
# ╔═╡ f6509949-b554-4b3f-9f43-f44eead0bec1
md"""
#### All Encounters
"""
# ╔═╡ 4a455495-dec6-4e09-83fa-89d3897d05d1
md"""
#### NMAC Encounters
"""
# ╔═╡ 7d9c5b4b-09a4-4094-94ec-35f843bf27e7
nmac_inds = findall([is_nmac(result[1]) for result in sim_results]);
# ╔═╡ 627ab28a-5116-11eb-2a3f-4335dedc5be3
md"""
## 💻 Task: List Interesting Indices
Fill in the encounter index of the three encounters you would like to highlight by changing the values below.
"""
# ╔═╡ 80c67666-5116-11eb-1327-ad61869eae97
begin
# STUDENT CODE START
highlight_index_1 = 1 # Change this value!!!
highlight_index_2 = 2 # Change this value!!!
highlight_index_3 = 3 # Change this value!!!
# STUDENT CODE END
md""
end
# ╔═╡ d5d34f9e-5116-11eb-0d99-df402ecd48ce
md"""
Your three encounters should now appear below.
Below each plot, comment on what is happening and why you deemed it "interesting". Please discuss whether the outcome is desirable and what it reveals about your system. (minimum: 3-5 sentences).
"""
# ╔═╡ 0de189be-5117-11eb-1199-3d478dfcb705
md"""
## 💻 Task: Comments on Selected Encounter 1
"""
# ╔═╡ f872cb06-5116-11eb-2a10-8d370af59754
plot_encounter(sim_results[highlight_index_1]...)
# ╔═╡ 3e1d90be-5117-11eb-2ef1-3928b154f9ea
md"""
### Selected Encounter 1 Comments
Write your comments here!
"""
# ╔═╡ add2229d-1b3e-49df-838a-0998636abd48
md"""
## 💻 Task: Comments on Selected Encounter 2
"""
# ╔═╡ f97094f2-5116-11eb-143f-9fba4377f713
plot_encounter(sim_results[highlight_index_2]...)
# ╔═╡ c38dece1-43ec-4bf1-a4cf-0dc396e109d7
md"""
### Selected Encounter 2 Comments
Write your comments here!
"""
# ╔═╡ 327609ce-5117-11eb-1031-c3a88dc0869b
md"""
## 💻 Task: Comments on Selected Encounter 3
"""
# ╔═╡ fa38e4f2-5116-11eb-0f88-f9af477959f5
plot_encounter(sim_results[highlight_index_3]...)
# ╔═╡ 47059438-5117-11eb-3b69-3d9687e5922a
md"""
### Selected Encounter 3 Comments
Write your comments here!
"""
# ╔═╡ 49ca25d0-5117-11eb-213f-cb761b37d5b5
md"""
# 2️⃣ Milestone Two: Future Testing and Validation Requirements
We have made significant progress in developing a basic collision avoidance system, from initial design through multiple iterations and analysis. However, real-world collision avoidance systems like ACAS X require years of rigorous development and testing before deployment. While we can't match that level of thoroughness in AA120Q, we can think critically about what additional work would be needed to create a more robust and reliable system.
Unfortuantely, we don't have that kind of time in AA120Q, so let's brainstorm what else we would need to do to continue to test and improve our system.
For your final task, consider the following two questions:
"""
# ╔═╡ 99a254d2-5118-11eb-0ca1-7501ea254a28
md"""
## 💻 Task: Discuss Additional Performance Metrics
While our current metrics of NMACs and alert rates provide important information, they don't capture all aspects of system performance. For example, they wouldn't detect a system that rapidly switches between climb and descend advisories --- behavior that could be problematic in practice.
What other metrics should we track to better evaluate our system?
"""
# ╔═╡ c1e61a14-5118-11eb-16ab-eb980f555c5c
md"""
### Additional Performance Metrics
Write your summary here!
"""
# ╔═╡ b0e4c16a-5119-11eb-1aa7-513244ba1a7d
md"""
## 💻 Task: Discuss Expansion of Test Coverage
Our current testing uses 1,000 encounters that all result in NMACs without intervention. This limited dataset, while useful for initial development, has significant blind spots. For instance, it cannot reveal induced collisions --- cases where our system actually causes an NMAC that wouldn't have occurred otherwise.
What additional testing would help validate our system?
"""
# ╔═╡ bda9d58e-5119-11eb-3192-1786a830c084
md"""
### Expanding Test Coverage
Write your summary here!
"""
# ╔═╡ 0b6380f7-e251-48dc-aeb9-be1a5b388d62
md"""
# Backend
_Helper functions and project management. Please do not edit._
"""
# ╔═╡ 5f313522-55a4-4eb5-95cd-eb2c6cd03a9a
begin
start_code() = html"""
<div class='container'><div class='line'></div><span class='text' style='color:#B1040E'><b><code><START CODE></code></b></span><div class='line'></div></div>
<p> </p>
<!-- START_CODE -->
"""
end_code() = html"""
<!-- END CODE -->
<p><div class='container'><div class='line'></div><span class='text' style='color:#B1040E'><b><code><END CODE></code></b></span><div class='line'></div></div></p>
"""
function combine_html_md(contents::Vector; return_html=true)
process(str) = str isa HTML ? str.content : html(str)
return join(map(process, contents))
end
function html_expand(title, content::Markdown.MD)
return HTML("<details><summary>$title</summary>$(html(content))</details>")
end
function html_expand(title, contents::Vector)
html_code = combine_html_md(contents; return_html=false)
return HTML("<details><summary>$title</summary>$html_code</details>")
end
html_space() = html"<br><br><br><br><br><br><br><br><br><br><br><br><br><br>"
html_half_space() = html"<br><br><br><br><br><br><br>"
html_quarter_space() = html"<br><br><br>"
Bonds = PlutoUI.BuiltinsNotebook.AbstractPlutoDingetjes.Bonds
struct DarkModeIndicator
default::Bool
end
DarkModeIndicator(; default::Bool=false) = DarkModeIndicator(default)
function Base.show(io::IO, ::MIME"text/html", link::DarkModeIndicator)
print(io, """
<span>
<script>
const span = currentScript.parentElement
span.value = window.matchMedia('(prefers-color-scheme: dark)').matches
</script>
</span>
""")
end
Base.get(checkbox::DarkModeIndicator) = checkbox.default
Bonds.initial_value(b::DarkModeIndicator) = b.default
Bonds.possible_values(b::DarkModeIndicator) = [false, true]
Bonds.validate_value(b::DarkModeIndicator, val) = val isa Bool
end
# ╔═╡ 786e1531-7a74-44fa-ba34-e8489c8af8f4
html_quarter_space()
# ╔═╡ 398b520c-511b-44f3-8a9a-964a95baba45
start_code()
# ╔═╡ 6a8d4da7-4256-42f3-98c2-817497570273
end_code()
# ╔═╡ 94d3b376-4299-41b6-b8f5-2096b480db56
html_half_space()
# ╔═╡ 4dd4b218-5116-11eb-10c0-8d575804e4bd
md"""
Use the arrow keys to move between encounters: $(@bind enc_ind NumberField(1:1000, default=1))
Number of encounters: $(length(sim_results))
"""
# ╔═╡ a4320530-f20a-4837-80e9-7933a1631471
md"""
#### Encounter Index: $enc_ind
"""
# ╔═╡ 57e82972-5116-11eb-321a-4b468f1674d1
plot_encounter(sim_results[enc_ind]...)
# ╔═╡ 683e8e20-04dc-4f1c-bd95-fd7ebb796f3d
md"""
Use the arrow keys to move between NMAC encounters: $(@bind nmac_ind NumberField(1:length(nmac_inds), default=1))
Number of NMAC encounters: $(length(nmac_inds))
*Note*: Please note the **encounter index** (not the number in the box)
"""
# ╔═╡ af33e451-a882-4b77-a414-72e9e13f3941
md"""
#### Encounter Index: $(nmac_inds[nmac_ind])
"""
# ╔═╡ 03d4ee3b-fb29-4644-b296-b00bb8162c81
plot_encounter(sim_results[nmac_inds[nmac_ind]]...)
# ╔═╡ 72e726bc-380d-4e46-9da8-039a5b8dde11
start_code()
# ╔═╡ 999260d8-2285-4542-a324-156ad924385a
end_code()
# ╔═╡ 4f046c6c-045d-425c-8794-6b0acc008fd2
html_quarter_space()
# ╔═╡ 7bf4fda9-fda2-49e5-a80b-a058108c9b05
start_code()
# ╔═╡ d4722740-3e73-459d-aaa9-83a7e9e1a4b7
end_code()
# ╔═╡ 9e5490b1-5ab1-4245-8800-b726d0528b14
html_quarter_space()
# ╔═╡ 0a391a3e-629a-46bd-be0e-954a9381d5e6
start_code()
# ╔═╡ e714189f-0a4d-4f8e-805a-8a185d3cc3d9
end_code()
# ╔═╡ 5e59b0e3-ff23-47a1-be1c-deca4fc3e01d
html_quarter_space()
# ╔═╡ e523fefe-820d-4d1d-9ddd-69f80a3ef9a7
start_code()
# ╔═╡ f2eb2bf2-bc69-499f-8369-9a00a4d7d9a8
end_code()
# ╔═╡ 0d3bc404-24be-4dc7-873f-9a34c0668ab0
html_half_space()
# ╔═╡ ad2c6577-0477-4dba-a31c-73c0b0a9ab12
html_expand("Hint: Expand for ideas to consider", md"""
Consider:
- Pilot/operational factors (e.g., advisory reversals, response time)
- Safety beyond just NMACs (e.g., close encounters, vertical separation)
- System behavior characteristics (e.g., alert timing, decision consistency)
- Efficiency measures (e.g., fuel usage, deviation from planned route)
""")
# ╔═╡ fa307504-3035-494a-9a89-9d239c2f750a
start_code()
# ╔═╡ 243c403e-90f9-4a95-8812-fbecc3cc0fcb
end_code()
# ╔═╡ c9b16ef1-5f3f-4dba-8b94-67f732e61c82
html_expand("Hind: Expand for ideas to consider", md"""
Consider:
- Different encounter types (non-NMAC scenarios, various geometries)
- Real-world complications (sensor noise, communication delays)
- Edge cases and failure modes
- Operational conditions (weather, aircraft performance limits)
- Integration with other systems and procedures
""")
# ╔═╡ 6f3d799b-eaaf-4871-b1fb-0da99529839c
start_code()
# ╔═╡ 8068bb96-2188-42bd-8646-822423ee2eff
end_code()
# ╔═╡ d91245fe-5119-11eb-3c29-516d33c9525f
html_half_space()
# ╔═╡ 40eac222-0dab-4450-9473-ed5add0937c5
html"""
<style>
h3 {
border-bottom: 1px dotted var(--rule-color);
}
summary {
font-weight: 500;
font-style: italic;
}
.container {
display: flex;
align-items: center;
width: 100%;
margin: 1px 0;
}
.line {
flex: 1;
height: 2px;
background-color: #B83A4B;
}
.text {
margin: 0 5px;
white-space: nowrap; /* Prevents text from wrapping */
}
h2hide {
border-bottom: 2px dotted var(--rule-color);
font-size: 1.8rem;
font-weight: 700;
margin-bottom: 0.5rem;
margin-block-start: calc(2rem - var(--pluto-cell-spacing));
font-feature-settings: "lnum", "pnum";
color: var(--pluto-output-h-color);
font-family: Vollkorn, Palatino, Georgia, serif;
line-height: 1.25em;
margin-block-end: 0;
display: block;
margin-inline-start: 0px;
margin-inline-end: 0px;
unicode-bidi: isolate;
}
h3hide {
border-bottom: 1px dotted var(--rule-color);
font-size: 1.6rem;
font-weight: 600;
color: var(--pluto-output-h-color);
font-feature-settings: "lnum", "pnum";
font-family: Vollkorn, Palatino, Georgia, serif;
line-height: 1.25em;
margin-block-start: 0;
margin-block-end: 0;
display: block;
margin-inline-start: 0px;
margin-inline-end: 0px;
unicode-bidi: isolate;
}
.styled-button {
background-color: var(--pluto-output-color);
color: var(--pluto-output-bg-color);
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
font-family: Alegreya Sans, Trebuchet MS, sans-serif;
}
</style>
<script>
const buttons = document.querySelectorAll('input[type="button"]');
buttons.forEach(button => button.classList.add('styled-button'));
</script>"""
# ╔═╡ 14655844-ce61-4261-a02f-70c020c7d439
PlutoUI.TableOfContents(title="Simulation")
# ╔═╡ Cell order:
# ╟─f3d1a84c-5113-11eb-08a2-938ec13fdcbc
# ╟─0cbbb521-705d-4bff-9e9d-a4d8608df465
# ╟─b4270d0f-a316-4781-a340-f6ec54f35a1b
# ╠═535c0573-63d1-464a-9780-3bd0e40e15d2
# ╟─298d750e-5114-11eb-3a5b-e72e7dba0b29
# ╟─0ef3bcb4-5115-11eb-385d-dfcaa74621f6
# ╟─4b41c514-5115-11eb-3283-d1daec5d0d8e
# ╟─786e1531-7a74-44fa-ba34-e8489c8af8f4
# ╟─e5665562-7a0b-4ea3-a8e5-32ad154d6527
# ╟─66d289f8-5115-11eb-31b8-b53a152f8751
# ╟─88e155d8-5115-11eb-02ce-ffb1001a025d
# ╟─398b520c-511b-44f3-8a9a-964a95baba45
# ╠═9ab41aa2-5115-11eb-0e52-cfb017fa7f30
# ╟─6a8d4da7-4256-42f3-98c2-817497570273
# ╟─378415a7-606f-4840-bb00-cc3fa21be250
# ╠═a3c2e22c-5115-11eb-0094-f9c26abc6eec
# ╟─94d3b376-4299-41b6-b8f5-2096b480db56
# ╟─ac1a33a0-5115-11eb-04e6-473cd31d90e0
# ╟─f6509949-b554-4b3f-9f43-f44eead0bec1
# ╟─4dd4b218-5116-11eb-10c0-8d575804e4bd
# ╟─a4320530-f20a-4837-80e9-7933a1631471
# ╟─57e82972-5116-11eb-321a-4b468f1674d1
# ╟─4a455495-dec6-4e09-83fa-89d3897d05d1
# ╟─7d9c5b4b-09a4-4094-94ec-35f843bf27e7
# ╟─683e8e20-04dc-4f1c-bd95-fd7ebb796f3d
# ╟─af33e451-a882-4b77-a414-72e9e13f3941
# ╟─03d4ee3b-fb29-4644-b296-b00bb8162c81
# ╟─627ab28a-5116-11eb-2a3f-4335dedc5be3
# ╟─72e726bc-380d-4e46-9da8-039a5b8dde11
# ╠═80c67666-5116-11eb-1327-ad61869eae97
# ╟─999260d8-2285-4542-a324-156ad924385a
# ╟─d5d34f9e-5116-11eb-0d99-df402ecd48ce
# ╟─4f046c6c-045d-425c-8794-6b0acc008fd2
# ╟─0de189be-5117-11eb-1199-3d478dfcb705
# ╟─f872cb06-5116-11eb-2a10-8d370af59754
# ╟─7bf4fda9-fda2-49e5-a80b-a058108c9b05
# ╠═3e1d90be-5117-11eb-2ef1-3928b154f9ea
# ╟─d4722740-3e73-459d-aaa9-83a7e9e1a4b7
# ╟─9e5490b1-5ab1-4245-8800-b726d0528b14
# ╠═add2229d-1b3e-49df-838a-0998636abd48
# ╟─f97094f2-5116-11eb-143f-9fba4377f713
# ╟─0a391a3e-629a-46bd-be0e-954a9381d5e6
# ╠═c38dece1-43ec-4bf1-a4cf-0dc396e109d7
# ╟─e714189f-0a4d-4f8e-805a-8a185d3cc3d9
# ╟─5e59b0e3-ff23-47a1-be1c-deca4fc3e01d
# ╟─327609ce-5117-11eb-1031-c3a88dc0869b
# ╟─fa38e4f2-5116-11eb-0f88-f9af477959f5
# ╟─e523fefe-820d-4d1d-9ddd-69f80a3ef9a7
# ╠═47059438-5117-11eb-3b69-3d9687e5922a
# ╟─f2eb2bf2-bc69-499f-8369-9a00a4d7d9a8
# ╟─0d3bc404-24be-4dc7-873f-9a34c0668ab0
# ╟─49ca25d0-5117-11eb-213f-cb761b37d5b5
# ╟─99a254d2-5118-11eb-0ca1-7501ea254a28
# ╟─ad2c6577-0477-4dba-a31c-73c0b0a9ab12
# ╟─fa307504-3035-494a-9a89-9d239c2f750a
# ╠═c1e61a14-5118-11eb-16ab-eb980f555c5c
# ╟─243c403e-90f9-4a95-8812-fbecc3cc0fcb
# ╟─b0e4c16a-5119-11eb-1aa7-513244ba1a7d
# ╟─c9b16ef1-5f3f-4dba-8b94-67f732e61c82
# ╟─6f3d799b-eaaf-4871-b1fb-0da99529839c
# ╠═bda9d58e-5119-11eb-3192-1786a830c084
# ╟─8068bb96-2188-42bd-8646-822423ee2eff
# ╟─d91245fe-5119-11eb-3c29-516d33c9525f
# ╟─0b6380f7-e251-48dc-aeb9-be1a5b388d62
# ╟─5f313522-55a4-4eb5-95cd-eb2c6cd03a9a
# ╟─40eac222-0dab-4450-9473-ed5add0937c5
# ╟─14655844-ce61-4261-a02f-70c020c7d439
# ╟─e2ad2cdf-c8ab-4e35-b6c0-724ebe9ec32b