-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathppo.jl
163 lines (139 loc) · 5.95 KB
/
ppo.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# PPO loss
function ppo_loss(π, 𝒫, 𝒟; info = Dict())
new_probs = logpdf(π, 𝒟[:s], 𝒟[:a])
r = exp.(new_probs .- 𝒟[:logprob])
A = 𝒟[:advantage]
p_loss = -mean(min.(r .* A, clamp.(r, (1f0 - 𝒫[:ϵ]), (1f0 + 𝒫[:ϵ])) .* A))
e_loss = -mean(entropy(π, 𝒟[:s]))
# Log useful information
ignore_derivatives() do
info[:entropy] = -e_loss
info[:kl] = mean(𝒟[:logprob] .- new_probs)
info[:clip_fraction] = sum((r .> 1 + 𝒫[:ϵ]) .| (r .< 1 - 𝒫[:ϵ])) / length(r)
info[:avg_advantage] = mean(A)
info[:avg_return] = mean(𝒟[:return])
end
𝒫[:λp]*p_loss + 𝒫[:λe]*e_loss
end
function PPO(;π::ActorCritic,
ϵ::Float32 = 0.2f0,
λp::Float32 = 1f0,
λe::Float32 = 0.1f0,
target_kl = 0.012f0,
a_opt::NamedTuple=(;),
c_opt::NamedTuple=(;),
log::NamedTuple=(;),
required_columns=[],
kwargs...)
function record_avgr(𝒟; info=Dict(), 𝒮)
info[:avg_r] = sum(𝒟[:r]) / sum(𝒟[:episode_end])
end
OnPolicySolver(;agent=PolicyParams(π),
𝒫=(ϵ=ϵ, λp=λp, λe=λe),
log = LoggerParams(;dir = "log/ppo", log...),
a_opt = TrainingParams(;loss = ppo_loss, early_stopping = (infos) -> (infos[end][:kl] > target_kl), name = "actor_", a_opt...),
c_opt = TrainingParams(;loss = (π, 𝒫, D; kwargs...) -> Flux.mse(value(π, D[:s]), D[:return]), name = "critic_", c_opt...),
post_batch_callback = (𝒟; kwargs...) -> (𝒟[:advantage] .= whiten(𝒟[:advantage])),
required_columns = unique([required_columns..., :return, :logprob, :advantage]),
post_sample_callback=record_avgr,
kwargs...)
end
# PPO loss with a penalty
function lagrange_ppo_loss(π, 𝒫, 𝒟; info = Dict())
new_probs = logpdf(π, 𝒟[:s], 𝒟[:a])
r = exp.(new_probs .- 𝒟[:logprob])
A = 𝒟[:advantage]
p_loss = -mean(min.(r .* A, clamp.(r, (1f0 - 𝒫[:ϵ]), (1f0 + 𝒫[:ϵ])) .* A))
e_loss = -mean(entropy(π, 𝒟[:s]))
#update the cost penalty
penalty = ignore_derivatives() do
# 𝒫[:penalty_param][1] = clamp(𝒫[:penalty_param][1], -7, 10)
# Flux.softplus(𝒫[:penalty_param][1])
# Average cost
Jc = sum(𝒟[:cost]) / sum(𝒟[:episode_end])
# Jc = maximum(𝒟[:cost])
# Compute the error
Δ = Jc - 𝒫[:target_cost]
# Update integral term
𝒫[:I][1] = clamp(𝒫[:I][1] + 𝒫[:Ki]*Δ, 0, 𝒫[:Ki_max])
# Smooth out the values
α = 𝒫[:ema_α]
𝒫[:smooth_Δ][1] = α * 𝒫[:smooth_Δ][1] + (1 - α)*Δ
𝒫[:smooth_Jc][1] = α * 𝒫[:smooth_Jc][1] + (1 - α)*Jc
# Compute the derivative term
∂ = max(0, 𝒫[:smooth_Jc][1] - 𝒫[:Jc_prev][1])
# Update the previous cost
𝒫[:Jc_prev][1] = 𝒫[:smooth_Jc][1]
# PID update
penalty = clamp(𝒫[:Kp] * 𝒫[:smooth_Δ][1] + 𝒫[:I][1] + 𝒫[:Kd]*∂, 0, 𝒫[:penalty_max])
info["penalty"] = penalty
info["cur_cost"] = Jc
info["prop_term"] = 𝒫[:Kp] * 𝒫[:smooth_Δ][1]
info["deriv_term"] = ∂
info["integral term"] = 𝒫[:I][1]
penalty
end
# cost_loss = 𝒫[:penalty_scale] * penalty * mean(r .* 𝒟[:cost_advantage])
cost_loss = penalty * mean(max.(r .* 𝒟[:cost_advantage], clamp.(r, (1f0 - 𝒫[:ϵ]), (1f0 + 𝒫[:ϵ])) .* 𝒟[:cost_advantage]))
# Log useful information
ignore_derivatives() do
info[:entropy] = -e_loss
info[:kl] = mean(𝒟[:logprob] .- new_probs)
info[:clip_fraction] = sum((r .> 1 + 𝒫[:ϵ]) .| (r .< 1 - 𝒫[:ϵ])) / length(r)
info["p_loss"] = 𝒫[:λp]*p_loss
info["cost_loss"] = cost_loss
info[:avg_advantage] = mean(A)
info[:avg_return] = mean(𝒟[:return])
end
(𝒫[:λp]*p_loss + 𝒫[:λe]*e_loss + cost_loss) / (1 + penalty)
end
function LagrangePPO(;π::ActorCritic,
Vc::ContinuousNetwork, # value network for estimating cost
ϵ::Float32 = 0.2f0,
λp::Float32 = 1f0,
λe::Float32 = 0.1f0,
λ_gae = 0.95f0,
target_kl = 0.012f0,
target_cost = 0.025f0,
penalty_scale = 1f0,
penalty_max = Inf32,
Ki_max = 10f0,
Ki = 1f-3,
Kp = 1,
Kd = 0,
ema_α = 0.95,
a_opt::NamedTuple=(;),
c_opt::NamedTuple=(;),
cost_opt::NamedTuple=(;),
log::NamedTuple=(;),
required_columns=[],
kwargs...)
function record_avgr(𝒟; info=Dict(), 𝒮)
info[:avg_r] = sum(𝒟[:r]) / sum(𝒟[:episode_end])
end
𝒫=(ϵ=ϵ, λp=λp, λe=λe,
target_cost=target_cost,
penalty_scale=penalty_scale,
penalty_max=penalty_max,
Ki_max=Ki_max,
I = [0f0],
Jc_prev = [0f0],
Ki=Ki,
Kp=Kp,
Kd=Kd,
ema_α=ema_α,
smooth_Δ = [0f0],
smooth_Jc = [0f0]
)
OnPolicySolver(;agent=PolicyParams(π),
𝒫=𝒫,
Vc=Vc,
log = LoggerParams(;dir = "log/lagrange_ppo", log...),
a_opt = TrainingParams(;loss = lagrange_ppo_loss, early_stopping = (infos) -> (infos[end][:kl] > target_kl), name = "actor_", a_opt...),
c_opt = TrainingParams(;loss = (π, 𝒫, D; kwargs...) -> Flux.mse(value(π, D[:s]), D[:return]), name = "critic_", c_opt...),
cost_opt = TrainingParams(;loss = (π, 𝒫, D; kwargs...) -> Flux.mse(value(π, D[:s]), D[:cost_return]), name = "cost_critic_", cost_opt...),
required_columns = unique([required_columns..., :return, :advantage, :logprob, :cost_advantage, :cost, :cost_return]),
post_batch_callback = (𝒟; kwargs...) -> (𝒟[:advantage] .= whiten(𝒟[:advantage])),
post_sample_callback=record_avgr,
kwargs...)
end