-
Notifications
You must be signed in to change notification settings - Fork 2
/
algoselector.py
834 lines (798 loc) · 36.5 KB
/
algoselector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
# Copyright 2021 Spirent Communications.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tool to suggest which ML approach is more applicable for
a particular data and usecase.
TODO:
1. Minimize code.
a. Reduce returns.
b. Optimize loops.
2. Add Informative data to the user.
"""
from __future__ import print_function
import signal
import sys
from pypsi import wizard as wiz
from pypsi.shell import Shell
# pylint: disable=line-too-long,too-few-public-methods,too-many-instance-attributes, too-many-nested-blocks, too-many-return-statements, too-many-branches
class Bcolors:
"""
For Coloring
"""
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class AlgoSelectorWizard():
"""
Class to create wizards
"""
def __init__(self):
"""
Perform Initialization.
"""
self.shell = Shell()
self.main_values = {}
self.main_l1_values = {}
self.main_l2a_values = {}
self.main_l2b_values = {}
self.main_l3_values = {}
self.main_l4_values = {}
self.unsup_values = {}
self.ri_values = {}
self.gen_values = {}
self.wiz_main = None
self.wiz_main_l1 = None
self.wiz_main_l2_a = None
self.wiz_main_l2_b = None
self.wiz_main_l3 = None
self.wiz_main_l4 = None
self.wiz_generic = None
self.wiz_unsupervised = None
self.wiz_reinforcement = None
self.ml_needed = False
self.supervised = False
self.unsupervised = False
self.reinforcement = False
self.data_size = 'high'
self.interpretability = False
self.faster = False
self.ftod_ratio = 'low'
self.reproducibility = False
############# All the Wizards ##################################
### GENERIC Wizards - Need for ML ##############################
def main_wizard_l1(self):
"""
The Main Wizard L1
"""
self.wiz_main_l1 = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Do you Need ML - Data Availability"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="data_availability",
# Display name
name=Bcolors.HEADER+"Do you have access to data about different situations, or that describes a lot of examples of situations"+Bcolors.ENDC,
# Help message
help="Y/N/U - Yes/No/Unknown",
validators=(wiz.required_validator),
default='Y',
),
)
)
def main_wizard_l2_a(self):
"""
The Main Wizard L2-A
"""
self.wiz_main_l2_a = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Do you Need ML - Data Creation"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="data_creativity",
# Display name
name=Bcolors.HEADER+"Will a system be able to gather a lot of data by trying sequences of actions in many different situations and seeing the results"+Bcolors.ENDC,
# Help message
help="Y/N/U - Yes/No/Unknown",
validators=(wiz.required_validator),
default='Y',
),
)
)
def main_wizard_l2_b(self):
"""
The Main Wizard L2-B
"""
label = """ One or more meaningful and informative 'tag' to provide context so that a machine learning model can learn from it. For example, labels might indicate whether a photo contains a bird or car, which words were uttered in an audio recording, or if an x-ray contains a tumor. Data labeling is required for a variety of use cases including computer vision, natural language processing, and speech recognition."""
self.wiz_main_l2_b = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Do you Need ML - Data Programmability"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="data_label",
# Display name
name=Bcolors.HEADER+" Do you have Labelled data? (Type Y/N/U - Yes/No/Unknown). Type help for description of label. "+Bcolors.ENDC,
# Help message
help=label,
validators=(wiz.required_validator),
default='Y',
),
wiz.WizardStep(
# ID where the value will be stored
id="data_programmability",
# Display name
name=Bcolors.HEADER+"Can a program or set of rules decide what actions to take based on the data you have about the situations"+Bcolors.ENDC,
# Help message
help="Y/N/U - Yes/No/Unknown",
validators=(wiz.required_validator),
default='Y',
),
)
)
def main_wizard_l3(self):
"""
The Main Wizard L3
"""
self.wiz_main_l3 = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Do you Need ML - Data Knowledge"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="data_knowledge",
# Display name
name=Bcolors.HEADER+"Could a knowledgeable human decide what actions to take based on the data you have about the situations"+Bcolors.ENDC,
# Help message
help="Y/N/U - Yes/No/Unknown",
validators=(wiz.required_validator),
default='Y',
),
)
)
def main_wizard_l4(self):
"""
The Main Wizard - L4
"""
self.wiz_main_l4 = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Do you Need ML - Data Pattern"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="data_pattern",
# Display name
name=Bcolors.HEADER+"Could there be patterns in these situations that the humans haven't recognized before"+Bcolors.ENDC,
# Help message
help="Y/N/U - Yes/No/Unknown",
validators=(wiz.required_validator),
default='Y'
),
)
)
### GENERIC Wizards - GOAL, METRICS, DATA ##############################
def gen_wizard(self):
"""
Generic Wizard - Goal, metrics, data
"""
self.wiz_generic = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Understanding Goal, Metrics, Data and Output Type"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="data_goal",
# Display name
name=Bcolors.HEADER+" What is your goal with the data? Predict, Describe or Explore"+Bcolors.ENDC,
# Help message
help="Enter one of Predict/Describe/Explore",
validators=(wiz.required_validator),
default='Explore'
),
wiz.WizardStep(
# ID where the value will be stored
id="metric_accuracy",
# Display name
name=Bcolors.HEADER+" How important the metric 'Accuracy' is for you? 1-5: 1- Least important 5- Most Important"+Bcolors.ENDC,
# Help message
help="Enter 1-5: 1 being least important, and 5 being most important",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="metric_speed",
# Display name
name=Bcolors.HEADER+" How important the metric 'Speed' is for you? 1-5: 1- Least important 5- Most Important"+Bcolors.ENDC,
# Help message
help="Enter 1-5: 1 being least important, and 5 being most important",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="metric_interpretability",
# Display name
name=Bcolors.HEADER+" How important the metric 'Interpretability' is for you? 1-5: 1- Least important 5- Most Important"+Bcolors.ENDC,
# Help message
help="Enter 1-5: 1 being least important, and 5 being most important",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="metric_reproducibility",
# Display name
name=Bcolors.HEADER+" How important the metric 'Reproducibility' is for you? 1-5: 1- Least important 5- Most Important"+Bcolors.ENDC,
# Help message
help="Enter 1-5: 1 being least important, and 5 being most important",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="metric_implementation",
# Display name
name=Bcolors.HEADER+" How important the metric 'Ease of Implementation and Maintenance' is for you? 1-5: 1- Least important 5- Most Important"+Bcolors.ENDC,
# Help message
help="Enter 1-5: 1 being least important, and 5 being most important",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_column",
# Display name
name=Bcolors.HEADER+" What does the data (columns) represent? well defined 'Features', 'signals' (Timeseries, pixels, etc) or Text - (Please type the associated number)"+Bcolors.ENDC,
# Help message
help="1. Well Defined Features\n 2. Signals\n 3. Text - Unstructured\n 4. None of the above\n",
validators=(wiz.required_validator),
default='Features'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_signal_type",
# Display name
name=Bcolors.HEADER+" If Signals, can you choose any one from the below list? "+Bcolors.ENDC,
# Help message
help="1. Image\n 2. Audio\n 3. Timeseries\n 4. None of the above\n 5. Not Applicable\n ",
validators=(wiz.required_validator),
default='3'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_text_type",
# Display name
name=Bcolors.HEADER+" If Text, can you choose any one from the below list? "+Bcolors.ENDC,
# Help message
help="1. Webpages\n 2. Emails\n 3. Social-Media Posts\n 4. Books\n 5. Formal Articles\n 6. Speech converted to text\n 7. None of the above\n 8. Not Applicable\n ",
validators=(wiz.required_validator),
default='3'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_features",
# Display name
name=Bcolors.HEADER+" If features, are they well defined? i.e., are all the variables well understood? "+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_features_count",
# Display name
name=Bcolors.HEADER+" If features, How many are there? "+Bcolors.ENDC,
# Help message
help="Number or NA",
validators=(wiz.required_validator),
default='10'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_distribution",
# Display name
name=Bcolors.HEADER+" Are you aware of any 'Distribution' that is inherent to the data, we can take advantage of?"+Bcolors.ENDC,
# Help message
help="Y/N/U",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_io_relation",
# Display name
name=Bcolors.HEADER+" Is the probability of 'Linear Relation' between input and the output is high?"+Bcolors.ENDC,
# Help message
help="Y/N/U",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_correlation",
# Display name
name=Bcolors.HEADER+" Are you confident that there is NO high correlation among the independent variables in your day?"+Bcolors.ENDC,
# Help message
help="Y/N/U. Change in one ",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_cond_indep",
# Display name
name=Bcolors.HEADER+" Are you confident that the variables are conditionally independent?"+Bcolors.ENDC,
# Help message
help="Y/N/U. If probability that it rains given lightining and thunder is same as probability that it rains given lightining, then rain and thunder are conditionally independent",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_missing",
# Display name
name=Bcolors.HEADER+" Are there any missing values in the data? "+Bcolors.ENDC,
# Help message
help="Y/N/U",
validators=(wiz.required_validator),
default='N'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_size_bytes",
# Display name
name=Bcolors.HEADER+" How big is the data in terms of size? (Use K/M/G Bytes unit) "+Bcolors.ENDC,
# Help message
help="Number(integer) and unit: K for Kilo, M for Mega and G for Giga. Ex: 10G for 10 Giga bytes",
validators=(wiz.required_validator),
default='1G'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_size_samples",
# Display name
name=Bcolors.HEADER+" How big is the data in terms of samples? (Use T/M/B Samples) "+Bcolors.ENDC,
# Help message
help="Number(integer) and unit: T for Thousand, M for Million and B for Billion. Ex: 1M for 1 Million Samples",
validators=(wiz.required_validator),
default='1M'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_type_output",
# Display name
name=Bcolors.HEADER+" What is the expected output data type ? (Please type number associated with type in 'help') "+Bcolors.ENDC,
# Help message
help=" 1:Numerical-Discrete\n 2:Numerical-Continuous\n 3:Ordinal\n 4:Categorical-Binary\n 5:Categorical-Multiclass",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="data_output_prob",
# Display name
name=Bcolors.HEADER+" Is the expected output data a probability value ? "+Bcolors.ENDC,
# Help message
help="Y/N",
validators=(wiz.required_validator),
default='N'
),
)
)
def unsupervised_wizard(self):
"""
The Un-Supervized Learning Wizard
"""
self.wiz_generic = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Understanding Goal, Metrics, Data and Output Type"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="unsup_goal",
# Display name
name=Bcolors.HEADER+" What is the main goal? (Please type number associated with type in 'help')"+Bcolors.ENDC,
# Help message
help="1: Explore Similar Groups (clustering) \n 2: Perform Dimensionality Reduction\n 3: Others\n",
validators=(wiz.required_validator),
default='1'
),
wiz.WizardStep(
# ID where the value will be stored
id="unsup_dr_topic_mod",
# Display name
name=Bcolors.HEADER+" If dimensionality reduction, do you prefer topic modelling ? (Please type NA is you are not sure)"+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='NA'
),
wiz.WizardStep(
# ID where the value will be stored
id="unsup_clus_dv",
# Display name
name=Bcolors.HEADER+" Are you aware of density variations in your data ? (Please type NA is you are not sure)"+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='NA'
),
wiz.WizardStep(
# ID where the value will be stored
id="unsup_clus_outliers",
# Display name
name=Bcolors.HEADER+" Are there too many outliers in your data ? (Please type NA is you are not sure)"+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='NA'
),
wiz.WizardStep(
# ID where the value will be stored
id="unsup_clus_groups",
# Display name
name=Bcolors.HEADER+" If clustering, do you know how many groups to form? (Please type NA is you are not sure)"+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='NA'
),
)
)
def reinforcement_wizard(self):
"""
The Reinforced Learning Wizard
"""
message = """
Reward |--------|
|-------| Agent | Action
| |-----| |-------|
| | |--------| |
| |state |
| | |
| | |-----------| |
| |----|Environment| |
|------| |-----|
|-----------|
"""
self.wiz_reinforcement = wiz.PromptWizard(
name=Bcolors.OKBLUE+"Reinforcement Specific"+Bcolors.ENDC,
description="",
steps=(
# The list of input prompts to ask the user.
wiz.WizardStep(
# ID where the value will be stored
id="ri_info",
# Display name
name=Bcolors.HEADER+" Type help for reference diagram for reinforcement-learning"+Bcolors.ENDC,
# Help message
help=message,
validators=(wiz.required_validator),
default='Type Help or Press Enter'
),
wiz.WizardStep(
# ID where the value will be stored
id="ri_model_preference",
# Display name
name=Bcolors.HEADER+" Do you prefer model-based approach? (Type NA if you are not sure) "+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="ri_model_availability",
# Display name
name=Bcolors.HEADER+" Do you have a model for model-based approach? (Type NA if not applicable) "+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="ri_modelfree_value",
# Display name
name=Bcolors.HEADER+" In Model-Free approach, do you prefer value-based approach? (Type NA if not applicable) "+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="ri_modelfree_value_state",
# Display name
name=Bcolors.HEADER+" In Model-Free Value-Based approach, do you prefer state-only model? (Type NA if not applicable) "+Bcolors.ENDC,
# Help message
help="Y/N/NA",
validators=(wiz.required_validator),
default='Y'
),
wiz.WizardStep(
# ID where the value will be stored
id="ri_app_domain",
# Display name
name=Bcolors.HEADER+" What is the application domain ? (Please type number associated with type in 'help') "+Bcolors.ENDC,
# Help message
help=" 1:Computer Resource Mgmt.\n 2:Robotics\n 3:Traffic-Control\n 4:Reccommenders\n 5:Autonomous Vehicles\n 6:Games\n 7:Chemistry\n 8:Others\n",
validators=(wiz.required_validator),
default='1'
),
)
)
############### All the Run Operations ######################
def run_mainwiz(self):
"""
Run the Main Wizard
"""
self.main_wizard_l1()
self.main_l1_values = self.wiz_main_l1.run(self.shell)
if self.main_l1_values['data_availability'].lower() == 'y':
self.main_wizard_l2_b()
self.main_l2b_values = self.wiz_main_l2_b.run(self.shell)
if self.main_l2b_values['data_labe'].lower() == 'y':
self.supervised = True
else:
self.unsupervised = True
if self.main_l2b_values['data_programmability'].lower() == 'y':
print(Bcolors.FAIL+"ML is not required - Please consider alternate approaches\n"+Bcolors.ENDC)
else:
self.main_wizard_l3()
self.main_l3_values = self.wiz_main_l3.run(self.shell)
if self.main_l3_values['data_knowledge'].lower() == 'y':
print(Bcolors.OKGREEN+"Looks like you need ML, let's continue"+Bcolors.ENDC)
self.ml_needed = True
else:
self.main_wizard_l4()
self.main_l4_values = self.wiz_main_l4.run(self.shell)
if self.main_l4_values['data_pattern'].lower() == 'y':
print(Bcolors.OKGREEN+"Looks like you need ML, let's continue"+Bcolors.ENDC)
self.ml_needed = True
else:
print(Bcolors.FAIL+"ML is not required - Please consider alternate approaches\n"+Bcolors.ENDC)
else:
self.main_wizard_l2_a()
self.main_l2a_values = self.wiz_main_l2_a.run(self.shell)
if self.main_l2a_values['data_creativity'].lower() == 'y':
print(Bcolors.OKGREEN+"Looks like you need ML, let's continue"+Bcolors.ENDC)
self.ml_needed = True
self.reinforcement = True
else:
print(Bcolors.FAIL+"ML is not required - Please consider alternate approaches\n"+Bcolors.ENDC)
def run_generic_wizard(self):
"""
Run Generic Wizard
"""
self.gen_wizard()
self.gen_values = self.wiz_generic.run(self.shell)
def run_unsupervised_wizard(self):
"""
Run UnSupervised Learning Wizard.
"""
self.unsupervised_wizard()
self.unsup_values = self.wiz_unsupervised.run(self.shell)
def run_reinforcement_wizard(self):
"""
Run Reinforced Learning Wizard
"""
self.reinforcement_wizard()
self.ri_values = self.wiz_reinforcement.run(self.shell)
def decide_unsupervised(self):
"""
Decide which Unsupervised-learning to use
"""
repro = False
clus_prob = False
if int(self.unsup_values['unsup_goal']) == 1:
# Clustering
if 'high' in self.data_size:
if not self.reproducibility:
clus_prob = True
else:
repro = True
else:
if 'y' in self.unsup_values['unsup_clus_dv'].tolower():
if 'y' in self.unsup_values['unsup_clus_groups'].tolower():
clus_prob = True
else:
print("Unsupervised Learning model to consider: Hierarchical Clustering")
return
else:
repro = True
if repro:
if 'y' in self.unsup_values['unsup_clus_outliers'].tolower():
print("Unsupervised Learning model to consider: Hierarchical Clustering")
else:
print("Unsupervised Learning model to consider: DBSCAN")
return
if clus_prob:
if 'y' in self.gen_values['data_output_prob'].tolower():
print("Unsupervised Learning model to consider: Gaussian Mixture")
else:
print("Unsupervised Learning model to consider: KMeans")
return
elif int(self.unsup_values['unsup_goal']) == 2:
# Dimensionality Reduction
if 'y' in self.unsup_values['unsup_dr_topic_mod'].tolower():
if 'y' in self.gen_values['data_output_prob'].tolower():
print("Unsupervised Learning model to consider: SVD")
else:
print("Unsupervised Learning model to consider: LDA")
else:
print("Unsupervised Learning model to consider: PCA")
else:
print("Sorry. We need to discuss, please connect with Anuket Thoth Project <[email protected]>")
def decide_reinforcement(self):
"""
Decide which reinforement learning to use.
"""
if (int(self.gen_values['data_type_output']) == 2 or
'y' in self.ri_values['ri_model_preference'].tolower()):
# Model Bsaed
if 'y' in self.ri_values['ri_model_availability'].tolower():
print("Reinforcement Learning model to consider - AlphaZero")
else:
print("Reinforcement Learning models to consider - World Models, I2A, MBMF, and MBVE")
elif 'n' in self.ri_values['ri_model_preference'].tolower():
# Model-Free based approach.
if 'y' not in self.ri_values['ri_modelfree_value'].tolower():
print("Reinforcement Learning models to consider: Policy Gradient and Actor Critic")
else:
if 'y' in self.ri_values['ri_modelfree_value_state'].tolower():
print("Reinforcement Learning models to consider - Monte Carlo, TD(0), and TD(Lambda)")
else:
print("Reinforcement Learning models to consider - SARSA, QLearning, Deep Queue Nets")
else:
# Default
print("Sorry. We need to discuss, please connect with Anuket Thoth Project <[email protected]>")
def perform_inference(self):
"""
Perform Inferences. Used across all 3 types.
"""
# Decide whether data is Low or High
self.data_size = 'unknown'
if ('k' in self.gen_values['data_size_bytes'].lower() or
't' in self.gen_values['data_size_samples']):
self.data_size = 'low'
if int(self.gen_values['metric_interpretability']) >= 3 :
self.interpretability = True
if int(self.gen_values['metric_speed']) >= 3 :
self.faster = True
if int(self.gen_values['metric_reproducibility']) >= 3 :
self.reproducibility = True
# Decide Features relative to Data (ftod_ratio) - high/low
if ('k' in self.gen_values['data_size_bytes'].lower() or
't' in self.gen_values['data_size_samples']):
if int(self.gen_values['data_features_count']) > 50:
self.ftod_ratio = 'high'
elif ('m' in self.gen_values['data_size_bytes'].lower() or
'm' in self.gen_values['data_size_samples']):
if int(self.gen_values['data_features_count']) > 5000:
self.ftod_ratio = 'high'
else:
if int(self.gen_values['data_features_count']) > 500000:
self.ftod_ratio = 'high'
def decide_supervised(self):
"""
Decide which Supervised learning to use.
"""
if 'high' in self.data_size:
# Cover: DT, RF, RNN, CNN, ANN and Naive Bayes
if self.interpretability:
if self.faster:
print("Supervised Learning model to consider - Decision Tree")
else:
print("Supervised Learning model to consider - Random Forest")
else:
if int(self.gen_values['data_column']) == 3:
print("Supervised Learning model to consider - RNN")
elif (int(self.gen_values['data_column']) == 2 and
int(self.gen_values['data_signal_type']) == 1):
print("Supervised Learning model to consider - CNN")
elif (int(self.gen_values['data_column']) == 2 and
(int(self.gen_values['data_signal_type']) == 2 or
int(self.gen_values['data_signal_type']) == 3)):
if 'y' in self.gen_values['data_output_prob'].tolower():
print("Supervised Learning model to consider - Naive Bayes")
else:
print("Supervised Learning model to consider - ANN")
else:
print("Supervised model to consider Learning - ANN")
elif 'low' in self.data_size:
from_b = False
# Cover: Regressions
if 'high' in self.ftod_ratio:
from_b = True
else:
print("Supervised Learning model to consider - SVN with Gaussian Kernel")
return
if int(self.gen_values['data_type_output']) != 2:
from_b = True
else:
if 'y' in self.gen_values['data_io_relation'].tolower():
print("Supervised Learning model to consider - Linear Regression or Linear SVM")
else:
print("Supervised Learning model to consider - Polynomial Regression or nonLinear SVM")
return
if from_b:
if int(self.gen_values['data_output_type']) == 4:
if 'y' in self.gen_values['data_output_prob'].tolower():
if 'y' in self.gen_values['data_cond_indep'].tolower():
print("Supervised Learning model to consider - Naive Bayes")
else:
if 'y' in self.gen_values['data_correlation'].tolower():
print("Supervised Learning model to consider - LASSO or Ridge Regression")
else:
print("Supervised Learning model to consider - Logistic Regression")
else:
print("Supervised Learning model to consider - Polynomial Regression or nonLinear SVM")
else:
print("Supervised Learning model to consider - KNN")
else:
# Default
print("Sorry. We need to discuss, please connect with Anuket Thoth Project <[email protected]>")
def ask_and_decide(self):
"""
THe Main Engine
"""
self.run_mainwiz()
if self.ml_needed:
self.run_generic_wizard()
if self.supervised:
self.decide_supervised()
elif self.unsupervised:
self.run_unsupervised_wizard()
self.decide_unsupervised()
elif self.reinforcement:
self.run_reinforcement_wizard()
self.decide_reinforcement()
def signal_handler(signum, frame):
"""
Signal Handler
"""
print("\n You interrupted, No Suggestion will be provided!")
print(signum, frame)
sys.exit(0)
def main():
"""
The Main Function
"""
try:
algowiz = AlgoSelectorWizard()
algowiz.ask_and_decide()
except(KeyboardInterrupt, MemoryError):
print("Some Error Occured - No Suggestion can be provided")
print("Thanks for using the Algoselector-Wizard, " +
"Hope our suggestion will be useful")
if __name__ == "__main__":
signal.signal(signal.SIGINT, signal_handler)
main()