-
-
- -
-
-
-
-
-

Assembling

-

fuzzy_join(): Joining -tables on non-normalized categories with approximate matching. Example

-

Joiner, -AggJoiner: transformers for joining multiple tables together. Example

+
+ +
+ + +
+
+

Effortless Pipelines

+

Create strong scikit-learn pipeline baselines effortlessly with + TableVectorizer + and + tabular_learner.

+
+ + +
+ + + {% include "demo_tabular_learner.html" %} +
-
-
-
-

Encoding

TableVectorizer: -turn a pandas dataframe into a numerical array for -machine learning. Example

-

GapEncoder: -OneHotEncoder but robust to typos or non-normalized categories. Example

+ +
+ + +
+
+
+

Powerful Feature Engineering

+

Encode text and high cardinality categorical data with the + GapEncoder + and + MinHashEncoder + , and extract features from dates with the + DatetimeEncoder + . +

+
+ {% include "demo_gap_encoder.html" %} +
+
+
-
-
-
-

Cleaning

deduplicate(): merge -categories of similar morphology (spelling). Example

-
+ +
+ + +
+
+
+

Interactive Data Exploration

+

Explore your dataframes interactively with + TableReport + .

+
+ {% include "demo_table_report_code.html" %} +
+

Click anywhere on the table

+
+ + {% include "demo_table_report_generated.html" %} + +
-