-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtop_vgg.py
executable file
·78 lines (63 loc) · 2.5 KB
/
top_vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from moleimages import MoleImages
# dimensions of our images.
img_width, img_height = 128, 128
top_model_weights_path = 'models/bottleneck_fc_model.h5'
train_data_dir = 'data_scaled'
validation_data_dir = 'data_scaled_validation'
nb_train_samples = 1760 #1763
nb_validation_samples = 192 #194
epochs = 50
batch_size = 16
def save_bottlebeck_features():
datagen = ImageDataGenerator() #rescale = 1. /255
# build the VGG16 network
model = applications.VGG16(include_top=False, weights='imagenet')
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
bottleneck_features_train = model.predict_generator(
generator, nb_train_samples // batch_size)
np.save(open('models/bottleneck_features_train.npy', 'w'),
bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
bottleneck_features_validation = model.predict_generator(
generator, nb_validation_samples // batch_size)
np.save(open('models/bottleneck_features_validation.npy', 'w'),
bottleneck_features_validation)
def train_top_model():
train_data = np.load(open('models/bottleneck_features_train.npy'))
train_labels = np.array(
[0] * (1043) + [1] * (717))
validation_data = np.load(open('models/bottleneck_features_validation.npy'))
validation_labels = np.array(
[0] * (115) + [1] * (77))
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adadelta', #rmsprop
loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
print('saving weights file: ',top_model_weights_path)
return model
if __name__ == '__main__':
save_bottlebeck_features()
model = train_top_model()