forked from chuanqi305/MobileNetv2-SSDLite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_caffe.py
75 lines (62 loc) · 2.6 KB
/
demo_caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import sys,os
import cv2
caffe_root = '/home/yaochuanqi/work/tmp/ssd/'
sys.path.insert(0, caffe_root + 'python')
import caffe
net_file= 'ssdlite/coco/deploy.prototxt'
caffe_model='ssdlite/deploy.caffemodel'
test_dir = "images"
caffe.set_mode_cpu()
net = caffe.Net(net_file,caffe_model,caffe.TEST)
COCO_CLASSES = ("background" , "person" , "bicycle" , "car" , "motorcycle" ,
"airplane" , "bus" , "train" , "truck" , "boat" , "traffic light",
"fire hydrant", "N/A" , "stop sign", "parking meter", "bench" ,
"bird" , "cat" , "dog" , "horse" , "sheep" , "cow" , "elephant" ,
"bear" , "zebra" , "giraffe" , "N/A" , "backpack" , "umbrella" ,
"N/A" , "N/A" , "handbag" , "tie" , "suitcase" , "frisbee" , "skis" ,
"snowboard" , "sports ball", "kite" , "baseball bat", "baseball glove",
"skateboard" , "surfboard" , "tennis racket", "bottle" , "N/A" ,
"wine glass", "cup" , "fork" , "knife" , "spoon" , "bowl" , "banana" ,
"apple" , "sandwich" , "orange" , "broccoli" , "carrot" , "hot dog",
"pizza" , "donut" , "cake" , "chair" , "couch" , "potted plant",
"bed" , "N/A" , "dining table", "N/A" , "N/A" , "toilet" , "N/A" ,
"tv" , "laptop" , "mouse" , "remote" , "keyboard" , "cell phone",
"microwave" , "oven" , "toaster" , "sink" , "refrigerator" , "N/A" ,
"book" , "clock" , "vase" , "scissors" , "teddy bear", "hair drier",
"toothbrush" )
def preprocess(src):
img = cv2.resize(src, (300,300))
img = img - 127.5
img = img / 127.5
return img
def postprocess(img, out):
h = img.shape[0]
w = img.shape[1]
box = out['detection_out'][0,0,:,3:7] * np.array([w, h, w, h])
cls = out['detection_out'][0,0,:,1]
conf = out['detection_out'][0,0,:,2]
return (box.astype(np.int32), conf, cls)
def detect(imgfile):
origimg = cv2.imread(imgfile)
img = preprocess(origimg)
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
net.blobs['data'].data[...] = img
out = net.forward()
box, conf, cls = postprocess(origimg, out)
for i in range(len(box)):
p1 = (box[i][0], box[i][1])
p2 = (box[i][2], box[i][3])
cv2.rectangle(origimg, p1, p2, (0,255,0))
p3 = (max(p1[0], 15), max(p1[1], 15))
title = "%s:%.2f" % (COCO_CLASSES[int(cls[i])], conf[i])
cv2.putText(origimg, title, p3, cv2.FONT_ITALIC, 0.6, (0, 255, 0), 1)
cv2.imshow("SSD", origimg)
k = cv2.waitKey(0) & 0xff
#Exit if ESC pressed
if k == 27 : return False
return True
for f in os.listdir(test_dir):
if detect(test_dir + "/" + f) == False:
break