-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsci.py
52 lines (38 loc) · 1.31 KB
/
sci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
import cv2
from skimage import feature
np.set_printoptions(threshold='nan')
from skimage.morphology import convex_hull_image
from skimage import data, img_as_float
# Generate noisy image of a square
im = cv2.imread('IMG_8792.jpg',0)
im = ndi.gaussian_filter(im, 4)
# Compute the Canny filter for two values of sigma
edges1 = feature.canny(im)
edges2 = feature.canny(im, sigma=4)
# display results
fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3),
sharex=True, sharey=True)
ax1.imshow(im, cmap=plt.cm.gray)
ax1.axis('off')
ax1.set_title('noisy image', fontsize=20)
ax2.imshow(edges1, cmap=plt.cm.gray)
ax2.axis('off')
ax2.set_title('Canny filter, $\sigma=1$', fontsize=20)
ax3.imshow(edges2, cmap=plt.cm.gray)
ax3.axis('off')
ax3.set_title('Canny filter, $\sigma=12$', fontsize=20)
fig.tight_layout()
chull = convex_hull_image(edges2)
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
ax = axes.ravel()
ax[0].set_title('Original picture')
ax[0].imshow(edges2, cmap=plt.cm.gray, interpolation='nearest')
ax[0].set_axis_off()
ax[1].set_title('Transformed picture')
ax[1].imshow(chull, cmap=plt.cm.gray, interpolation='nearest')
ax[1].set_axis_off()
plt.tight_layout()
plt.show()