forked from TiarkRompf/minidot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnano4-1-smallstep0.v
465 lines (380 loc) · 12.5 KB
/
nano4-1-smallstep0.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
(* Full safety for STLC *)
(* values well-typed with respect to runtime environment *)
(* inversion lemma structure *)
(* subtyping (in addition to nano2.v) *)
(* copied from nano4-1, making the step to small-step *)
(* first step: substitution *)
Require Export SfLib.
Require Export Arith.EqNat.
Require Export Arith.Le.
Module STLC.
Definition id := nat.
Inductive ty : Type :=
| TBool : ty
| TFun : ty -> ty -> ty
.
Inductive tm : Type :=
| ttrue : tm
| tfalse : tm
| tvar : id -> tm
| tloc : id -> tm
| tabs : tm -> tm (* \f x.y *)
| tapp : tm -> tm -> tm (* f(x) *)
.
Inductive vl : Type :=
| vbool : bool -> vl
| vabs : (*list vl -> *) tm -> vl
.
Definition venv := list vl.
Definition tenv := list ty.
Hint Unfold venv.
Hint Unfold tenv.
(*
Fixpoint length {X: Type} (l : list X): nat :=
match l with
| [] => 0
| _::l' => 1 + length l'
end.
*)
Fixpoint index {X : Type} (n : id) (l : list X) : option X :=
match l with
| [] => None
| a :: l' => if beq_nat n (length l') then Some a else index n l'
end.
Definition vl2tm (v:vl): tm :=
match v with
| vbool true => ttrue
| vbool false => tfalse
| vabs ey => tabs ey
end.
Inductive has_type : venv -> tenv -> tm -> ty -> Prop :=
| t_true: forall sto env,
has_type sto env ttrue TBool
| t_false: forall sto env,
has_type sto env tfalse TBool
| t_var: forall x sto env T1,
index x env = Some T1 ->
has_type sto env (tvar x) T1
| t_loc: forall x v sto env T1,
index x sto = Some v ->
has_type sto [] (vl2tm v) T1 ->
has_type sto env (tloc x) T1
| t_abs: forall sto env y T1 T2,
has_type sto (T1::(TFun T1 T2)::env) y T2 ->
has_type sto env (tabs y) (TFun T1 T2)
| t_app: forall sto env f x T1 T2,
has_type sto env f (TFun T1 T2) ->
has_type sto env x T1 ->
has_type sto env (tapp f x) T2
.
Definition val_type S v T := has_type S [] (vl2tm v) T.
Inductive wf_sto : venv -> tenv -> Prop :=
| wfe_nil : wf_sto nil nil
| wfe_cons : forall v t vs ts,
val_type (v::vs) v t ->
wf_sto vs ts ->
wf_sto (cons v vs) (cons t ts)
.
Inductive stp: venv -> tenv -> ty -> ty -> Prop :=
| stp_bool: forall S G,
stp S G TBool TBool
| stp_fun: forall S G T1 T2 T3 T4,
stp S G T3 T1 ->
stp S G T2 T4 ->
stp S G (TFun T1 T2) (TFun T3 T4)
.
Fixpoint subst (a:tm) (t:tm) {struct t}: tm :=
match t with
| ttrue => ttrue
| tfalse => tfalse
| tvar i => if beq_nat i 0 then a else tvar (i-1)
| tapp t1 t2 => tapp (subst a t1) (subst a t2)
| tabs t1 => tabs (subst a t1)
| tloc i => tloc i
end.
(*
None means timeout
Some None means stuck
Some (Some v)) means result v
Could use do-notation to clean up syntax.
*)
(* TODO: store + substitution *)
Definition push sto (v:vl) := (v::sto, length sto).
Fixpoint teval(n: nat)(sto: venv)(t: tm){struct n}: option (option (venv * nat)) :=
match n with
| 0 => None
| S n =>
match t with
| ttrue => Some (Some (push sto (vbool true)))
| tfalse => Some (Some (push sto (vbool false)))
| tvar x => Some None
| tloc x => Some (Some (sto,x))
| tabs y => Some (Some (push sto (vabs y)))
| tapp ef ex =>
match teval n sto ef with
| None => None
| Some None => Some None
| Some (Some (sto1,lvf)) =>
match teval n sto1 ex with
| None => None
| Some None => Some None
| Some (Some (sto2, lvx)) =>
match index lvx sto2, index lvf sto1 with
| Some vx, Some (vabs ey) =>
teval n sto2 (subst (tloc lvx) (subst (tloc lvf) ey))
| _,_ => Some None
end
end
end
end
end.
Hint Constructors ty.
Hint Constructors tm.
Hint Constructors vl.
Hint Constructors has_type.
Hint Constructors wf_sto.
Hint Constructors option.
Hint Constructors list.
Hint Unfold index.
Hint Unfold length.
Hint Unfold val_type.
Hint Resolve ex_intro.
Lemma wf_length : forall vs ts,
wf_sto vs ts ->
(length vs = length ts).
Proof.
intros. induction H. auto.
assert ((length (v::vs)) = 1 + length vs). constructor.
assert ((length (t::ts)) = 1 + length ts). constructor.
rewrite IHwf_sto in H1. auto.
Qed.
Hint Immediate wf_length.
Lemma index_max : forall X vs n (T: X),
index n vs = Some T ->
n < length vs.
Proof.
intros X vs. induction vs.
Case "nil". intros. inversion H.
Case "cons".
intros. inversion H.
case_eq (beq_nat n (length vs)); intros E.
SCase "hit".
rewrite E in H1. inversion H1. subst.
eapply beq_nat_true in E.
unfold length. unfold length in E. rewrite E. eauto.
SCase "miss".
rewrite E in H1.
assert (n < length vs). eapply IHvs. apply H1.
compute. eauto.
Qed.
(*
Lemma index_hit {X}: forall x x1 (B:X) A G,
index x ((x1,B)::G) = Some A ->
fresh G <= x1 ->
x = x1 ->
B = A.
Proof.
intros.
unfold index in H.
elim (le_xx (fresh G) x1 H0). intros.
rewrite H2 in H.
assert (beq_nat x x1 = true). eapply beq_nat_true_iff. eauto.
rewrite H3 in H. inversion H. eauto.
Qed.
*)
Lemma index_extend : forall X vs n a (T: X),
index n vs = Some T ->
index n (a::vs) = Some T.
Proof.
intros.
assert (n < length vs). eapply index_max. eauto.
assert (n <> length vs). omega.
assert (beq_nat n (length vs) = false) as E. eapply beq_nat_false_iff; eauto.
unfold index. unfold index in H. rewrite H. rewrite E. reflexivity.
Qed.
Lemma hastp_extend : forall vs ts v1 t T,
has_type vs ts t T ->
has_type (v1::vs) ts t T.
Proof. intros. induction H; eauto.
econstructor. eapply index_extend; eauto. eauto.
Qed.
Lemma valtp_extend : forall vs v v1 T,
val_type vs v T ->
val_type (v1::vs) v T.
Proof. intros. eapply hastp_extend. eauto. Qed.
Lemma index_extend_mult : forall X vs n a (T: X),
index n vs = Some T ->
index n (a++vs) = Some T.
Proof. intros. induction a. eauto. eapply index_extend. eauto. Qed.
Lemma hastp_extend_mult : forall vs ts v1 t T,
has_type vs ts t T ->
has_type (v1++vs) ts t T.
Proof. intros. induction v1. eauto. eapply hastp_extend. eauto. Qed.
Lemma valtp_extend_mult : forall vs v v1 T,
val_type vs v T ->
val_type (v1++vs) v T.
Proof. intros. induction v1. eauto. eapply hastp_extend. eauto. Qed.
(*
Lemma index_safe_ex: forall H1 G1 TF i,
wf_sto H1 G1 ->
index i G1 = Some TF ->
exists v, index i H1 = Some v /\ val_type H1 v TF.
Proof. intros. induction H.
Case "nil". inversion H0.
Case "cons". inversion H0.
case_eq (beq_nat i (length ts)).
SCase "hit".
intros E.
rewrite E in H3. inversion H3. subst t.
assert (beq_nat i (length vs) = true). eauto.
assert (index i (v :: vs) = Some v). eauto. unfold index. rewrite H2. eauto.
eauto.
SCase "miss".
intros E.
assert (beq_nat i (length vs) = false). eauto.
rewrite E in H3.
assert (exists v0, index i vs = Some v0 /\ val_type vs v0 TF) as HI. eapply IHwf_env. eauto.
inversion HI as [v0 HI1]. inversion HI1.
eexists. econstructor. eapply index_extend; eauto. eapply valtp_extend; eauto.
Qed.
*)
Inductive res_type: venv -> option (venv * nat) -> ty -> Prop :=
| not_stuck: forall sto sto0 sto1 tenv x v T,
index x sto = Some v ->
val_type sto v T ->
sto = sto1++sto0 ->
wf_sto sto tenv ->
res_type sto0 (Some (sto,x)) T.
Hint Constructors res_type.
Hint Resolve not_stuck.
(*
Lemma restp_extend_mult : forall vs v v1 T,
res_type vs v T ->
res_type (v1++vs) v T.
Proof.
intros. inversion H. subst sto.
eapply not_stuck. eauto. eauto.rewrite index_extend_mult. eapply index_extend_mult; eauto. eauto. instantiate (1:= nil). simpl. eauto.
*)
(*
Lemma valtp_widen: forall vf H1 H2 T1 T2,
val_type H1 vf T1 ->
stp H1 T1 H2 T2 ->
val_type H2 vf T2.
Proof.
intros. inversion H; inversion H0; subst T2; subst; eauto. inversion H9. inversion H9.
admit.
Qed.
Lemma invert_abs: forall venv vf vx T1 T2,
val_type venv vf (TFun T1 T2) ->
exists env tenv y T3 T4,
vf = (vabs env y) /\
wf_env env tenv /\
has_type (T3::(TFun T3 T4)::tenv) y T4 /\
stp venv T1 (vx::vf::env) T3 /\
stp (vx::vf::env) T4 venv T2.
Proof.
intros. inversion H. repeat eexists; repeat eauto. admit. admit.
Qed.
*)
(* if not a timeout, then result not stuck and well-typed *)
Lemma index_hit: forall {X: Type} vs (v:X),
index (length vs) (v :: vs) = Some v.
Proof.
intros. simpl.
assert (beq_nat (length vs) (length vs) = true).
eapply beq_nat_true_iff. eauto.
rewrite H. eauto.
Qed.
Lemma index_hit0: forall {X: Type} vs (v:X),
index 0 (vs++[v]) = Some v.
Proof.
intros. induction vs. eauto.
rewrite <-app_comm_cons. eapply index_extend. eauto.
Qed.
Lemma index_hit1: forall {X: Type} vs (v:X) x,
index (S x) (vs++[v]) = index x vs.
Proof.
intros. induction vs. eauto.
rewrite <-app_comm_cons.
remember (index x vs). destruct o.
symmetry in Heqo. eapply index_extend in Heqo. eapply index_extend in IHvs.
rewrite Heqo. rewrite IHvs. eauto.
simpl. rewrite <-Heqo. rewrite IHvs.
simpl. rewrite app_length. simpl.
assert (length vs + 1 = S (length vs)). omega. rewrite H. eauto.
Qed.
Lemma hastp_subst: forall sto x T0,
has_type sto [] (tloc x) T0 ->
forall t env T,
has_type sto (env++[T0]) t T ->
has_type sto env (subst (tloc x) t) T.
Proof.
intros sto x T0 H. inversion H. subst. induction t; intros; inversion H0; subst T.
- eauto.
- eauto.
- (* var *) simpl. destruct i.
+ (* hit *) simpl. subst env0. rewrite index_hit0 in H6. inversion H6. subst. eauto.
+ (* miss *) simpl. subst env0. rewrite index_hit1 in H6.
assert (i - 0 = i) as E. omega. rewrite E. eauto.
- (* loc *)
simpl. eauto.
- (* abs *)
simpl. eauto.
- (* app *)
simpl. eauto.
Qed.
Lemma push_safe: forall sto tenv v T,
wf_sto sto tenv ->
val_type (v::sto) v T ->
res_type sto (Some (push sto v)) T.
Proof.
intros. eapply not_stuck. eapply index_hit. eauto. eauto.
instantiate (1:= [v]). eauto. econstructor; eauto.
Qed.
Theorem full_safety : forall n e sto sto2 tenv2 res T,
teval n (sto2++sto) e = Some res -> has_type sto [] e T -> wf_sto (sto2++sto) tenv2 ->
res_type (sto2++sto) res T.
Proof.
intros n. induction n.
(* 0 *) intros. inversion H.
(* S n *) intros. destruct e; inversion H; inversion H0.
- Case "True". eapply push_safe; eauto.
- Case "False". eapply push_safe; eauto.
- Case "Var".
inversion H6.
- Case "Loc".
subst.
eapply not_stuck. eauto. eauto. eapply index_extend_mult; eauto.
eapply valtp_extend_mult; eauto.
rewrite app_nil_l. eauto. eauto.
- Case "Abs".
eapply push_safe; eauto. unfold val_type. unfold vl2tm. subst.
eapply hastp_extend. eapply hastp_extend_mult. eauto.
- Case "App".
subst T.
remember (teval n (sto2++sto) e1) as tf.
destruct tf as [rf|]; try solve by inversion.
assert (res_type (sto2++sto) rf (TFun T1 T2)) as HRF. SCase "HRF". subst. eapply IHn; eauto.
inversion HRF as [? ? ? ? ? vf].
subst.
remember (teval n (sto4 ++ sto2 ++ sto) e2) as tx.
destruct tx as [rx|]; try solve by inversion.
assert (res_type (sto4 ++ sto2 ++ sto) rx T1) as HRX. SCase "HRX". subst. eapply IHn; eauto. eapply hastp_extend_mult; eauto.
inversion HRX as [? ? ? ? ? vx].
subst.
rewrite H2 in H3.
rewrite H8 in H3.
(* inversion lemma for vf ? *)
destruct vf. inversion H10; inversion H14; destruct b; inversion H5.
(* now we know it's a closure, and we have has_type evidence *)
inversion H10.
assert (res_type ([] ++ sto3 ++ sto4 ++ sto2 ++ sto) res T2) as HRR.
eapply IHn. eauto. eauto.
eapply hastp_subst. eauto. eapply hastp_subst. eapply hastp_extend_mult. eauto.
simpl. eauto. eapply hastp_extend_mult. eauto. eauto.
inversion HRR as [? ? ? ? ? vr].
eapply not_stuck. eauto. eauto. eauto. instantiate (1:= sto6 ++ [] ++ sto3 ++ sto4).
simpl. rewrite H19. simpl. rewrite <- app_assoc. rewrite <- app_assoc. eauto.
eauto.
Qed.
End STLC.