forked from TiarkRompf/minidot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnano4-3.v
436 lines (356 loc) · 11.7 KB
/
nano4-3.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
(* Full safety for STLC *)
(* values well-typed with respect to runtime environment *)
(* inversion lemma structure *)
(* subtyping (in addition to nano2.v) *)
(* singleton types (in addtion to nano4-1.v *)
(* TODO: proper subtyping in nano4-1 and here,
phrase singleton type lookup through stp,
dependent application *)
Require Export SfLib.
Require Export Arith.EqNat.
Require Export Arith.Le.
Module STLC.
Definition id := nat.
Inductive ty : Type :=
| TBool : ty
| TFun : ty -> ty -> ty
| TVar : id -> ty
.
Inductive tm : Type :=
| ttrue : tm
| tfalse : tm
| tvar : id -> tm
| tapp : tm -> tm -> tm (* f(x) *)
| tabs : tm -> tm (* \f x.y *)
.
Inductive vl : Type :=
| vbool : bool -> vl
| vabs : list vl -> tm -> vl
.
Definition venv := list vl.
Definition tenv := list ty.
Hint Unfold venv.
Hint Unfold tenv.
Fixpoint length {X: Type} (l : list X): nat :=
match l with
| [] => 0
| _::l' => 1 + length l'
end.
Fixpoint index {X : Type} (n : id) (l : list X) : option X :=
match l with
| [] => None
| a :: l' => if beq_nat n (length l') then Some a else index n l'
end.
Inductive closed: nat -> ty -> Prop :=
| cl_bool: forall k,
closed k TBool
| cl_fun: forall k T1 T2,
closed k T1 ->
closed k T2 ->
closed k (TFun T1 T2)
| cl_selb: forall k x,
k > x ->
closed k (TVar x)
.
Inductive has_type : tenv -> tm -> ty -> Prop :=
| t_true: forall env,
has_type env ttrue TBool
| t_false: forall env,
has_type env tfalse TBool
| t_varx: forall x env T1,
index x env = Some T1 ->
has_type env (tvar x) (TVar x)
| t_var: forall x env T1,
index x env = Some T1 ->
has_type env (tvar x) T1
| t_app: forall env f x T1 T2,
has_type env f (TFun T1 T2) ->
has_type env x T1 ->
has_type env (tapp f x) T2
| t_abs: forall env y T1 T2,
has_type (T1::(TFun T1 T2)::env) y T2 ->
closed (length env) (TFun T1 T2) ->
has_type env (tabs y) (TFun T1 T2)
.
Inductive stp2: venv -> ty -> venv -> ty -> Prop :=
| stp2_bool: forall G1 G2,
stp2 G1 TBool G2 TBool
| stp2_fun: forall G1 G2 T1 T2 T3 T4,
stp2 G2 T3 G1 T1 ->
stp2 G1 T2 G2 T4 ->
stp2 G1 (TFun T1 T2) G2 (TFun T3 T4)
| stp2_varx: forall G1 G2 x1 x2 v,
index x1 G1 = Some v ->
index x2 G2 = Some v ->
stp2 G1 (TVar x1) G2 (TVar x2)
.
Inductive wf_env : venv -> tenv -> Prop :=
| wfe_nil : wf_env nil nil
| wfe_cons : forall v t vs ts,
val_type (v::vs) v t ->
wf_env vs ts ->
wf_env (cons v vs) (cons t ts)
with val_type : venv -> vl -> ty -> Prop :=
| v_bool: forall venv b TE,
stp2 [] TBool venv TE ->
val_type venv (vbool b) TE
| v_abs: forall env venv tenv y T1 T2 TE,
wf_env venv tenv ->
has_type (T1::(TFun T1 T2)::tenv) y T2 ->
stp2 venv (TFun T1 T2) env TE ->
val_type env (vabs venv y) TE
| v_var: forall env venv x v TE,
index x venv = Some v ->
stp2 venv (TVar x) env TE ->
val_type env v TE
.
(*
None means timeout
Some None means stuck
Some (Some v)) means result v
Could use do-notation to clean up syntax.
*)
Fixpoint teval(n: nat)(env: venv)(t: tm){struct n}: option (option vl) :=
match n with
| 0 => None
| S n =>
match t with
| ttrue => Some (Some (vbool true))
| tfalse => Some (Some (vbool false))
| tvar x => Some (index x env)
| tabs y => Some (Some (vabs env y))
| tapp ef ex =>
match teval n env ex with
| None => None
| Some None => Some None
| Some (Some vx) =>
match teval n env ef with
| None => None
| Some None => Some None
| Some (Some (vbool _)) => Some None
| Some (Some (vabs env2 ey)) =>
teval n (vx::(vabs env2 ey)::env2) ey
end
end
end
end.
Hint Constructors ty.
Hint Constructors tm.
Hint Constructors vl.
Hint Constructors has_type.
Hint Constructors stp2.
Hint Constructors val_type.
Hint Constructors wf_env.
Hint Constructors option.
Hint Constructors list.
Hint Unfold index.
Hint Unfold length.
Hint Resolve ex_intro.
Lemma wf_length : forall vs ts,
wf_env vs ts ->
(length vs = length ts).
Proof.
intros. induction H. auto.
assert ((length (v::vs)) = 1 + length vs). constructor.
assert ((length (t::ts)) = 1 + length ts). constructor.
rewrite IHwf_env in H1. auto.
Qed.
Hint Immediate wf_length.
Lemma index_max : forall X vs n (T: X),
index n vs = Some T ->
n < length vs.
Proof.
intros X vs. induction vs.
Case "nil". intros. inversion H.
Case "cons".
intros. inversion H.
case_eq (beq_nat n (length vs)); intros E.
SCase "hit".
rewrite E in H1. inversion H1. subst.
eapply beq_nat_true in E.
unfold length. unfold length in E. rewrite E. eauto.
SCase "miss".
rewrite E in H1.
assert (n < length vs). eapply IHvs. apply H1.
compute. eauto.
Qed.
Lemma index_exists : forall X vs n,
n < length vs ->
exists (T:X), index n vs = Some T.
Proof.
intros X vs. induction vs.
Case "nil". intros. inversion H.
Case "cons".
intros. inversion H.
SCase "hit".
assert (beq_nat n (length vs) = true) as E. eapply beq_nat_true_iff. eauto.
simpl. subst n. rewrite E. eauto.
SCase "miss".
assert (beq_nat n (length vs) = false) as E. eapply beq_nat_false_iff. omega.
simpl. rewrite E. eapply IHvs. eauto.
Qed.
Lemma index_extend : forall X vs n a (T: X),
index n vs = Some T ->
index n (a::vs) = Some T.
Proof.
intros.
assert (n < length vs). eapply index_max. eauto.
assert (n <> length vs). omega.
assert (beq_nat n (length vs) = false) as E. eapply beq_nat_false_iff; eauto.
unfold index. unfold index in H. rewrite H. rewrite E. reflexivity.
Qed.
Lemma stp2_extend : forall v1 G1 G2 T1 T2,
stp2 G1 T1 G2 T2 ->
stp2 (v1::G1) T1 G2 T2 /\
stp2 G1 T1 (v1::G2) T2 /\
stp2 (v1::G1) T1 (v1::G2) T2.
Proof.
intros. induction H; repeat split; econstructor; try eapply IHstp2_1; try eapply IHstp2_2; try eapply index_extend; eauto.
Qed.
Lemma stp2_extend1 : forall v1 G1 G2 T1 T2,
stp2 G1 T1 G2 T2 ->
stp2 (v1::G1) T1 G2 T2.
Proof.
intros. eapply stp2_extend. eauto.
Qed.
Lemma stp2_extend2 : forall v1 G1 G2 T1 T2,
stp2 G1 T1 G2 T2 ->
stp2 G1 T1 (v1::G2) T2.
Proof.
intros. eapply stp2_extend. eauto.
Qed.
Lemma stp2_reg : forall G1 G2 T1 T2,
stp2 G1 T1 G2 T2 ->
stp2 G1 T1 G1 T1 /\
stp2 G2 T2 G2 T2.
Proof.
intros. induction H; repeat split; econstructor; try eapply IHstp2_1; try eapply IHstp2_2; eauto.
Qed.
Lemma stp2_reg1 : forall G1 G2 T1 T2,
stp2 G1 T1 G2 T2 ->
stp2 G1 T1 G1 T1.
Proof.
intros. eapply (stp2_reg G1 G2). eauto.
Qed.
Lemma stp2_reg2 : forall G1 G2 T1 T2,
stp2 G1 T1 G2 T2 ->
stp2 G2 T2 G2 T2.
Proof.
intros. eapply (stp2_reg G1 G2). eauto.
Qed.
Lemma valtp_extend : forall vs v v1 T,
val_type vs v T ->
val_type (v1::vs) v T.
Proof.
intros. induction H; econstructor; eauto; try eapply stp2_extend2; eauto.
Qed.
Lemma index_safe_ex: forall H1 G1 TF i,
wf_env H1 G1 ->
index i G1 = Some TF ->
exists v, index i H1 = Some v /\ val_type H1 v TF.
Proof. intros. induction H.
Case "nil". inversion H0.
Case "cons". inversion H0.
case_eq (beq_nat i (length ts)).
SCase "hit".
intros E.
rewrite E in H3. inversion H3. subst t.
assert (beq_nat i (length vs) = true). eauto.
assert (index i (v :: vs) = Some v). eauto. unfold index. rewrite H2. eauto.
eauto.
SCase "miss".
intros E.
assert (beq_nat i (length vs) = false). eauto.
rewrite E in H3.
assert (exists v0, index i vs = Some v0 /\ val_type vs v0 TF) as HI. eapply IHwf_env. eauto.
inversion HI as [v0 HI1]. inversion HI1.
eexists. econstructor. eapply index_extend; eauto. eapply valtp_extend; eauto.
Qed.
Inductive res_type: venv -> option vl -> ty -> Prop :=
| not_stuck: forall venv v T,
val_type venv v T ->
res_type venv (Some v) T.
Hint Constructors res_type.
Hint Resolve not_stuck.
Lemma stp2_refl: forall G1 T1,
closed (length G1) T1 ->
stp2 G1 T1 G1 T1.
Proof.
intros. induction T1; inversion H; eauto.
- Case "var".
assert (exists v, index i G1 = Some v) as E. eapply index_exists; eauto.
destruct E.
eapply stp2_varx; eauto.
Qed.
Lemma stp2_trans: forall G1 G2 G3 T1 T2 T3,
stp2 G1 T1 G2 T2 ->
stp2 G2 T2 G3 T3 ->
stp2 G1 T1 G3 T3.
Proof.
intros. revert H H0. revert G1 G2 G3 T1 T3. induction T2; intros; inversion H; inversion H0.
- Case "bool". eauto.
- Case "fun". eauto.
- Case "var". subst. eapply stp2_varx. eauto. rewrite <-H6. rewrite H8. eauto.
Qed.
Lemma valtp_widen: forall vf H1 H2 T1 T2,
val_type H1 vf T1 ->
stp2 H1 T1 H2 T2 ->
val_type H2 vf T2.
Proof.
intros. inversion H.
econstructor; eauto. eapply stp2_trans; eauto.
econstructor; eauto. eapply stp2_trans; eauto.
econstructor; eauto. eapply stp2_trans; eauto.
Qed.
Lemma invert_abs: forall venv vf T1 T2,
val_type venv vf (TFun T1 T2) ->
exists env tenv y T3 T4,
vf = (vabs env y) /\
wf_env env tenv /\
has_type (T3::(TFun T3 T4)::tenv) y T4 /\
stp2 venv T1 env T3 /\
stp2 env T4 venv T2.
Proof.
intros. inversion H; try solve by inversion. inversion H2. repeat eexists; eauto.
Qed.
(* if not a timeout, then result not stuck and well-typed *)
Theorem full_safety : forall n e tenv venv res T,
teval n venv e = Some res -> has_type tenv e T -> wf_env venv tenv ->
res_type venv res T.
Proof.
intros n. induction n.
(* 0 *) intros. inversion H.
(* S n *) intros. destruct e; inversion H; inversion H0.
Case "True". eapply not_stuck. eapply v_bool; eauto.
Case "False". eapply not_stuck. eapply v_bool; eauto.
Case "VarX".
destruct (index_safe_ex venv0 tenv0 T1 i) as [v [I V]]; eauto.
rewrite I. eapply not_stuck. eapply v_var; eauto.
Case "Var".
destruct (index_safe_ex venv0 tenv0 T i) as [v [I V]]; eauto.
rewrite I. eapply not_stuck. eapply V.
Case "App".
remember (teval n venv0 e1) as tf.
remember (teval n venv0 e2) as tx.
subst T.
destruct tx as [rx|]; try solve by inversion.
assert (res_type venv0 rx T1) as HRX. SCase "HRX". subst. eapply IHn; eauto.
inversion HRX as [? vx].
destruct tf as [rf|]; subst rx; try solve by inversion.
assert (res_type venv0 rf (TFun T1 T2)) as HRF. SCase "HRF". subst. eapply IHn; eauto.
inversion HRF as [? vf].
destruct (invert_abs venv0 vf T1 T2) as
[env1 [tenv [y0 [T3 [T4 [EF [WF [HTY [STX STY]]]]]]]]]. eauto.
(* now we know it's a closure, and we have has_type evidence *)
assert (res_type (vx::vf::env1) res T4) as HRY.
SCase "HRY".
subst. eapply IHn. eauto. eauto.
(* wf_env f x *) econstructor. eapply valtp_widen; eauto. eapply stp2_extend2; eauto. eapply stp2_extend2; eauto.
(* wf_env f *) econstructor. eapply v_abs; eauto. eapply stp2_extend2. eapply stp2_fun. eapply stp2_reg2; eauto. eapply stp2_reg1; eauto.
eauto.
inversion HRY as [? vy].
eapply not_stuck. eapply valtp_widen; eauto. eapply stp2_extend1. eapply stp2_extend1. eauto.
Case "Abs".
eapply not_stuck. eapply v_abs; eauto. eapply stp2_refl. rewrite (wf_length venv0 tenv0). eauto. eauto.
Qed.
End STLC.