forked from dvschultz/dataset-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacesort.py
114 lines (90 loc) · 4.13 KB
/
facesort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import cv2
import argparse
import os
def parse_args():
desc = "This tool sorts a collection of images based on the number of faces detected in them using opencv face detection. The result is subfolders in the output folder. It can be limited to only output between a minimum and a maximum using --min and --max. You can also sort based on eyes detected using --method eyes."
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('-i','--input_folder', type=str,
default='./input/',
help='Directory path to the inputs folder. (default: %(default)s)')
parser.add_argument('-o','--output_folder', type=str,
default='./output/',
help='Directory path to the outputs folder. (default: %(default)s)')
parser.add_argument('--file_extension', type=str,
default='png',
help='file extension ["png","jpg"] (default: %(default)s)')
parser.add_argument('--verbose', action='store_true',
help='Print progress to console.')
parser.add_argument('--method', type=str,
default='faces',
help='Method ["faces","eyes"] (default: %(default)s)')
parser.add_argument('--min', type=int,
default=None,
help='Specifies a minimum number of faces to output. (default: %(default)s)')
parser.add_argument('--max', type=int,
default=None,
help='Specifies a maximum number of faces to output. (default: %(default)s)')
args = parser.parse_args()
return args
def saveImage(img,path,filename):
if(args.file_extension == "png"):
new_file = os.path.splitext(filename)[0] + ".png"
cv2.imwrite(os.path.join(path, new_file), img, [cv2.IMWRITE_PNG_COMPRESSION, 0])
elif(args.file_extension == "jpg"):
new_file = os.path.splitext(filename)[0] + ".jpg"
cv2.imwrite(os.path.join(path, new_file), img, [cv2.IMWRITE_JPEG_QUALITY, 90])
def process_image(img, filename):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detectors = []
if (args.method == 'faces'):
detectors = [
'haarcascade_frontalface_alt.xml',
'haarcascade_frontalface_alt2.xml',
'haarcascade_frontalface_alt_tree.xml',
'haarcascade_frontalface_default.xml',
'haarcascade_profileface.xml',
]
elif (args.method == 'eyes'):
detectors = [
'haarcascade_eye.xml',
'haarcascade_eye_tree_eyeglasses.xml',
]
else:
print("Unknown method: " + args.method)
return;
counts = []
for detector in detectors:
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + detector)
detected = face_cascade.detectMultiScale(gray, 1.3, 5)
counts.append(len(detected))
detected = max(counts)
if(args.verbose): print('\t\tdetected: ' + str(detected))
if ((args.max == None or (args.max != None and detected <= args.max)) and (args.min == None or (args.min != None and detected >= args.min))):
save_to = args.output_folder + '/' + str(detected)
if(args.verbose): print('\t\tsaving to: ' + save_to)
if not os.path.exists(save_to):
os.makedirs(save_to)
saveImage(img, save_to, filename)
def main():
global args
args = parse_args()
if os.path.isdir(args.input_folder):
print("Processing folder: " + args.input_folder)
else:
print("Not a working input_folder path: " + args.input_folder)
return;
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
for root, subdirs, files in os.walk(args.input_folder):
if(args.verbose): print('--\nroot = ' + root)
for subdir in subdirs:
if(args.verbose): print('\t- subdirectory ' + subdir)
for filename in files:
file_path = os.path.join(root, filename)
if(args.verbose): print('\t- file %s (full path: %s)' % (filename, file_path))
img = cv2.imread(file_path)
if hasattr(img, 'copy'):
# if(args.verbose): print('processing image: ' + filename)
process_image(img,os.path.splitext(filename)[0])
if __name__ == "__main__":
main()