-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCTSet.cpp
197 lines (168 loc) · 5.75 KB
/
CTSet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
* Copyright (C) 2008 Cold Spring Harbor Laboratory and Andrew D Smith
* Author: Andrew D Smith
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include "CTSet.hpp"
#include <cstring>
#include <numeric>
#include <smithlab_utils.hpp>
using std::vector;
using std::string;
using std::pair;
using std::sort;
using std::max;
using smithlab::alphabet_size;
float
CTSet::fixed_matrix[15][4] = {
{ 1.000, 0.000, 0.000, 0.000 }, // A
{ 0.000, 1.000, 0.000, 0.000 }, // C
{ 0.000, 0.000, 1.000, 0.000 }, // G
{ 0.000, 0.000, 0.000, 1.000 }, // T
{ 0.500, 0.500, 0.000, 0.000 }, // M
{ 0.500, 0.000, 0.500, 0.000 }, // R
{ 0.500, 0.000, 0.000, 0.500 }, // W
{ 0.000, 0.500, 0.500, 0.000 }, // S
{ 0.000, 0.500, 0.000, 0.500 }, // Y
{ 0.000, 0.000, 0.500, 0.500 }, // K
{ 0.333, 0.333, 0.333, 0.000 }, // V
{ 0.333, 0.333, 0.000, 0.333 }, // H
{ 0.333, 0.000, 0.333, 0.333 }, // D
{ 0.000, 0.333, 0.333, 0.333 }, // B
{ 0.250, 0.250, 0.250, 0.250 } // N
};
float
CTSet::get_bits(const vector<float> &col,
const vector<float> &base_comp) {
float bits = 0;
for (size_t i = 0; i < alphabet_size; ++i)
if (col[i] > 0)
bits += col[i]*(log2(col[i]) -
log2(base_comp[i]));
return bits;
}
CTSet::CTSet(const float granularity,
const vector<float> &base_comp,
const float correction) {
if (granularity == 0) {
types = vector<vector<float> >(n_degen_nucs);
for (size_t i = 0; i < n_degen_nucs; i++)
copy(fixed_matrix[i], fixed_matrix[i] + alphabet_size,
back_inserter(types[i]));
}
else {
size_t volume = static_cast<size_t>(std::ceil(1.0/granularity));
size_t n_types = (volume + 1)*(volume + 2)*(volume + 3)/6;
types = vector<vector<float> >(n_types, vector<float>(alphabet_size));
vector<float> v(alphabet_size);
generate_column(volume, volume, 0, 0, v);
}
sort_types(base_comp);
build_scoremat(base_comp, correction);
}
CTSet::CTSet(const float *original, const float newgran,
const vector<float> &base_comp,
const float correction) {
vector<float> temp(alphabet_size);
copy(original, original + alphabet_size, temp.begin());
types.push_back(temp);
for (size_t i = 0; i < alphabet_size; ++i) {
copy(original, original + alphabet_size, temp.begin());
temp[i] += newgran;
const float total = accumulate(temp.begin(), temp.end(), 0.0);
std::transform(temp.begin(), temp.end(), temp.begin(),
std::bind2nd(std::divides<float>(), total));
types.push_back(temp);
}
build_scoremat(base_comp, correction);
}
size_t
CTSet::generate_column(const size_t volume, const size_t max_volume,
const size_t depth, size_t index, vector<float>& v) {
for (size_t i = 0; i <= volume; ++i) {
v[depth] = i;
if (depth == 2) {
v[depth + 1] = volume - i;
for (size_t j = 0; j < alphabet_size; ++j)
types[index][j] = v[j]/max_volume;
index++;
}
else index = generate_column(volume - i, max_volume, depth + 1, index, v);
}
return index;
}
void
CTSet::sort_types(const vector<float> &base_comp) {
vector<pair<float, size_t> > sorter;
for (size_t i = 0; i < types.size(); ++i) {
float bits = 0;
for (size_t j = 0; j < alphabet_size; j++)
if (types[i][j] > 0)
bits += types[i][j]*(log(types[i][j]) - log(base_comp[j]));
sorter.push_back(std::make_pair(bits, i));
}
sort(sorter.begin(), sorter.end(), std::greater<pair<float, size_t> >());
vector<vector<float> > temp_types;
for (size_t i = 0; i < types.size(); i++)
temp_types.push_back(types[sorter[i].second]);
types.clear();
unique_copy(temp_types.begin(), temp_types.end(), back_inserter(types));
}
/* convert column types to corresponding scoring matrix columns */
void
CTSet::build_scoremat(const vector<float> &base_comp, const float correction) {
scoremat = types;
bits.clear();
for (size_t i = 0; i < types.size(); ++i) {
float col_bits = 0;
for (size_t j = 0; j < types[i].size(); j++) {
scoremat[i][j] = ((types[i][j] > 0.0) ?
log2(types[i][j]) : log2(correction)) - log2(base_comp[j]);
if (types[i][j] > 0.0)
col_bits += types[i][j]*(log2(types[i][j]) - log2(base_comp[j]));
}
bits.push_back(col_bits);
}
}
Matrix
CTSet::path_to_matrix(const DMEPath &path) const {
float *best_matrix[path.path.size()];
for (size_t i = 0; i < path.path.size(); ++i) {
best_matrix[i] = new float[alphabet_size];
copy(types[path.path[i]].begin(), types[path.path[i]].end(),
best_matrix[i]);
}
const Matrix matrix(best_matrix, path.path.size());
for (size_t i = 0; i < path.path.size(); ++i)
delete[] best_matrix[i];
return matrix;
}
Matrix
CTSet::path_to_matrix(const DMEPath &path,
const vector<CTSet> &column_types) {
float *best_matrix[path.path.size()];
for (size_t i = 0; i < path.path.size(); ++i) {
best_matrix[i] = new float[alphabet_size];
copy(column_types[i].types[path.path[i]].begin(),
column_types[i].types[path.path[i]].end(),
best_matrix[i]);
}
const Matrix matrix(best_matrix, path.path.size());
for (size_t i = 0; i < path.path.size(); ++i)
delete[] best_matrix[i];
return matrix;
}