Skip to content

Latest commit

 

History

History
61 lines (54 loc) · 2.84 KB

README.md

File metadata and controls

61 lines (54 loc) · 2.84 KB

Equilibrium Propagation (Pytorch)

Pytorch implementation of the Equilibrium Propagation algorithm as introduced in Equilibrium Propagation: Bridging the Gap Between Energy-Based Models and Backpropagation. This project is licensed under the terms of the MIT license.

Usage

You can run the models using the run_energy_model_mnist.py script which provides the following options:

python run_energy_model_mnist.py -h
usage: run_energy_model_mnist.py [-h] [--batch_size BATCH_SIZE]
                                 [--c_energy {cross_entropy,squared_error}]
                                 [--dimensions DIMENSIONS [DIMENSIONS ...]]
                                 [--energy {cond_gaussian,restr_hopfield}]
                                 [--epochs EPOCHS] [--fast_ff_init]
                                 [--learning_rate LEARNING_RATE]
                                 [--log_dir LOG_DIR]
                                 [--nonlinearity {leaky_relu,relu,sigmoid,tanh}]
                                 [--optimizer {adam,adagrad,sgd}]
                                 [--seed SEED]

Train an energy-based model on MNIST using Equilibrium Propagation.

optional arguments:
  -h, --help            show this help message and exit
  --batch_size BATCH_SIZE
                        Size of mini batches during training.
  --c_energy {cross_entropy,squared_error}
                        Supervised learning cost function.
  --dimensions DIMENSIONS [DIMENSIONS ...]
                        Dimensions of the neural network.
  --energy {cond_gaussian,restr_hopfield}
                        Type of energy-based model.
  --epochs EPOCHS       Number of epochs to train.
  --fast_ff_init        Flag to enable fast feedforward initialization.
  --learning_rate LEARNING_RATE
                        Learning rate of the optimizer.
  --log_dir LOG_DIR     Subdirectory within ./log/ to store logs.
  --nonlinearity {leaky_relu,relu,sigmoid,tanh}
                        Nonlinearity between network layers.
  --optimizer {adam,adagrad,sgd}
                        Optimizer used to train the model.
  --seed SEED           Random seed for pytorch

The default configurations for unspecified parameters are stored in /etc/.

Documentation

Documentation is auto-generated from docstrings using pdoc3 . --html --force --output-dir docs.

Results

Two demo runs for the conditional Gaussian and the restricted Hopfield model using the default configuration can be found in the /log/ directory. They can be reproduced with:

#!/bin/bash
python run_energy_model_mnist.py --energy cond_gaussian --c_energy cross_entropy --seed 2019
python run_energy_model_mnist.py --energy restr_hopfield --c_energy squared_error --seed 2019

Dependencies

python 3.6
pytorch 1.1.0
torchvision 0.3.0