-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_energy_model_mnist.py
161 lines (124 loc) · 6.3 KB
/
run_energy_model_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# MIT License
# Copyright (c) 2020 Simon Schug, João Sacramento
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import json
import logging
import sys
import torch
from lib import config, data, energy, train, utils
def load_default_config(energy):
"""
Load default parameter configuration from file.
Args:
tasks: String with the energy name
Returns:
Dictionary of default parameters for the given energy
"""
if energy == "restr_hopfield":
default_config = "etc/energy_restr_hopfield.json"
elif energy == "cond_gaussian":
default_config = "etc/energy_cond_gaussian.json"
else:
raise ValueError("Energy based model \"{}\" not defined.".format(energy))
with open(default_config) as config_json_file:
cfg = json.load(config_json_file)
return cfg
def parse_shell_args(args):
"""
Parse shell arguments for this script.
Args:
args: List of shell arguments
Returns:
Dictionary of shell arguments
"""
parser = argparse.ArgumentParser(
description="Train an energy-based model on MNIST using Equilibrium Propagation."
)
parser.add_argument("--batch_size", type=int, default=argparse.SUPPRESS,
help="Size of mini batches during training.")
parser.add_argument("--c_energy", choices=["cross_entropy", "squared_error"],
default=argparse.SUPPRESS, help="Supervised learning cost function.")
parser.add_argument("--dimensions", type=int, nargs="+",
default=argparse.SUPPRESS, help="Dimensions of the neural network.")
parser.add_argument("--energy", choices=["cond_gaussian", "restr_hopfield"],
default="cond_gaussian", help="Type of energy-based model.")
parser.add_argument("--epochs", type=int, default=argparse.SUPPRESS,
help="Number of epochs to train.")
parser.add_argument("--fast_ff_init", action='store_true', default=argparse.SUPPRESS,
help="Flag to enable fast feedforward initialization.")
parser.add_argument("--learning_rate", type=float, default=argparse.SUPPRESS,
help="Learning rate of the optimizer.")
parser.add_argument("--log_dir", type=str, default="",
help="Subdirectory within ./log/ to store logs.")
parser.add_argument("--nonlinearity", choices=["leaky_relu", "relu", "sigmoid", "tanh"],
default=argparse.SUPPRESS, help="Nonlinearity between network layers.")
parser.add_argument("--optimizer", choices=["adam", "adagrad", "sgd"],
default=argparse.SUPPRESS, help="Optimizer used to train the model.")
parser.add_argument("--seed", type=int, default=argparse.SUPPRESS,
help="Random seed for pytorch")
return vars(parser.parse_args(args))
def run_energy_model_mnist(cfg):
"""
Main script.
Args:
cfg: Dictionary defining parameters of the run
"""
# Initialize seed if specified (might slow down the model)
if cfg['seed'] is not None:
torch.manual_seed(cfg['seed'])
# Create the cost function to be optimized by the model
c_energy = utils.create_cost(cfg['c_energy'], cfg['beta'])
# Create activation functions for every layer as a list
phi = utils.create_activations(cfg['nonlinearity'], len(cfg['dimensions']))
# Initialize energy based model
if cfg["energy"] == "restr_hopfield":
model = energy.RestrictedHopfield(
cfg['dimensions'], c_energy, cfg['batch_size'], phi).to(config.device)
elif cfg["energy"] == "cond_gaussian":
model = energy.ConditionalGaussian(
cfg['dimensions'], c_energy, cfg['batch_size'], phi).to(config.device)
else:
raise ValueError(f'Energy based model \"{cfg["energy"]}\" not defined.')
# Define optimizer (may include l2 regularization via weight_decay)
w_optimizer = utils.create_optimizer(model, cfg['optimizer'], lr=cfg['learning_rate'])
# Create torch data loaders with the MNIST data set
mnist_train, mnist_test = data.create_mnist_loaders(cfg['batch_size'])
logging.info("Start training with parametrization:\n{}".format(
json.dumps(cfg, indent=4, sort_keys=True)))
for epoch in range(1, cfg['epochs'] + 1):
# Training
train.train(model, mnist_train, cfg['dynamics'], w_optimizer, cfg["fast_ff_init"])
# Testing
test_acc, test_energy = train.test(model, mnist_test, cfg['dynamics'], cfg["fast_ff_init"])
# Logging
logging.info(
"epoch: {} \t test_acc: {:.4f} \t mean_E: {:.4f}".format(
epoch, test_acc, test_energy)
)
if __name__ == '__main__':
# Parse shell arguments as input configuration
user_config = parse_shell_args(sys.argv[1:])
# Load default parameter configuration from file for the specified energy-based model
cfg = load_default_config(user_config["energy"])
# Overwrite default parameters with user configuration where applicable
cfg.update(user_config)
# Setup global logger and logging directory
config.setup_logging(cfg["energy"] + "_" + cfg["c_energy"] + "_" + cfg["dataset"],
dir=cfg['log_dir'])
# Run the script using the created paramter configuration
run_energy_model_mnist(cfg)