forked from rosinality/stylegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
410 lines (361 loc) · 17.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from io import BytesIO
import lmdb
from PIL import Image
from torch.utils.data import Dataset
import os
import numpy as np
import PIL.Image
import json
import torch
import dnnlib
import openslide
import h5py
import random
import pandas as pd
class MultiResolutionDataset(Dataset):
def __init__(self, path, transform, resolution=256):
self.env = lmdb.open(
path,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
if not self.env:
raise IOError('Cannot open lmdb dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
self.resolution = resolution
self.transform = transform
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
buffer = BytesIO(img_bytes)
img = Image.open(buffer)
img = self.transform(img)
return img
#----------------------------------------------------------------------------
class Dataset(torch.utils.data.Dataset):
def __init__(self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
transform,
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
# use_labels = False, # Enable conditioning labels? False = label dimension is zero.
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed = 0, # Random seed to use when applying max_size.
):
self._name = name
self._raw_shape = list(raw_shape)
self.transform = transform
# self._use_labels = use_labels
# self._raw_labels = None
# self._label_shape = None
random.seed(random_seed)
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
print('Number of indexes to load:', len(self._raw_idx))
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
# def _get_raw_labels(self):
# if self._raw_labels is None:
# self._raw_labels = self._load_raw_labels() if self._use_labels else None
# if self._raw_labels is None:
# self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
# assert isinstance(self._raw_labels, np.ndarray)
# assert self._raw_labels.shape[0] == self._raw_shape[0]
# assert self._raw_labels.dtype in [np.float32, np.int64]
# if self._raw_labels.dtype == np.int64:
# assert self._raw_labels.ndim == 1
# assert np.all(self._raw_labels >= 0)
# return self._raw_labels
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
# def _load_raw_labels(self): # to be overridden by subclass
# raise NotImplementedError
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
image = self._load_raw_image(self._raw_idx[idx])
if self._xflip[idx]:
assert image.ndim == 3 # HWC
image = image[:, :, ::-1]
image = self.transform(image)
return image
# def get_label(self, idx):
# label = self._get_raw_labels()[self._raw_idx[idx]]
# if label.dtype == np.int64:
# onehot = np.zeros(self.label_shape, dtype=np.float32)
# onehot[label] = 1
# label = onehot
# return label.copy()
# def get_details(self, idx):
# d = dnnlib.EasyDict()
# d.raw_idx = int(self._raw_idx[idx])
# d.xflip = (int(self._xflip[idx]) != 0)
# d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
# return d
@property
def name(self):
return self._name
@property
def image_shape(self):
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # HWC
return self.image_shape[2]
@property
def resolution(self):
assert len(self.image_shape) == 3 # HWC
assert self.image_shape[0] == self.image_shape[1]
return self.image_shape[0]
# @property
# def label_shape(self):
# if self._label_shape is None:
# raw_labels = self._get_raw_labels()
# if raw_labels.dtype == np.int64:
# self._label_shape = [int(np.max(raw_labels)) + 1]
# else:
# self._label_shape = raw_labels.shape[1:]
# return list(self._label_shape)
# @property
# def label_dim(self):
# assert len(self.label_shape) == 1
# return self.label_shape[0]
# @property
# def has_labels(self):
# return any(x != 0 for x in self.label_shape)
# @property
# def has_onehot_labels(self):
# return self._get_raw_labels().dtype == np.int64
#----------------------------------------------------------------------------
class WSICoordDataset(Dataset):
def __init__(self,
wsi_dir, # Path to WSI directory.
coord_dir, # Path to h5 coord database.
process_list = None, #Dataframe path of WSIs to process and their seg_levels/downsample levels that correspond to the coords
wsi_exten = '.svs',
max_coord_per_wsi = 'inf',
resolution = 256, # Ensure specific resolution.
desc = None,
rescale_mpp = False,
desired_mpp = 0.25,
check_white_black = False,
**super_kwargs, # Additional arguments for the Dataset base class.
):
self.wsi_dir = wsi_dir
self.wsi_exten = wsi_exten
self.coord_dir = coord_dir
self.max_coord_per_wsi = max_coord_per_wsi
if process_list is None:
self.process_list = None
else:
self.process_list = pd.read_csv(process_list)
self.patch_size = resolution
self.rescale_mpp = rescale_mpp
self.desired_mpp = desired_mpp
self.check_white_black = check_white_black
#Implement labels here..
self.coord_dict, self.wsi_names, self.wsi_props = self.createCoordDict()
if desc is None:
name = str(self.coord_dir)
else:
name = desc
self.coord_size = len(self.coord_dict) # get the size of coord dataset
print('Number of WSIs:', len(self.wsi_names))
print('Number of patches:', self.coord_size)
# self.wsi = None
# self.wsi_open = None
self._all_fnames = os.listdir(self.wsi_dir)
raw_shape = [self.coord_size] + list(self._load_raw_image(0).shape)
print('Raw shape of dataset:', raw_shape)
if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
raise IOError('Image files do not match the specified resolution')
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
def createCoordDict(self):
if self.process_list is None:
#Only use WSI that have coord files....
all_coord_files = sorted([x for x in os.listdir(self.coord_dir) if x.endswith('.h5')])
else:
#Only use WSI that coord files aren't excluded and are in coord_dir
wsi_plist = list(self.process_list.loc[~self.process_list['exclude_ids'].isin(['y','yes','Y']),'slide_id'])
coord_plist = sorted([x.split(self.wsi_exten)[0]+'.h5' for x in wsi_plist])
all_coord_files = sorted([x for x in os.listdir(self.coord_dir) if x.endswith('.h5') and x in coord_plist])
#Get WSI filenames from path that have coord files/in process list
wsi_names = sorted([w for w in os.listdir(self.wsi_dir) if w.endswith(self.wsi_exten) and w.split(self.wsi_exten)[0]+'.h5' in all_coord_files])
#Get corresponding coord h5 files using WSI paths
h5_names = [wsi_name.split(self.wsi_exten)[0]+'.h5' for wsi_name in wsi_names]
#Loop through coord files, get coord length, randomly choose X coords for each wsi (max_coord_per_wsi)
coord_dict = {}
wsi_props = {}
wsi_number = 0
for h5, wsi_name in zip(h5_names, wsi_names):
#All h5 paths must exist....
h5_path = os.path.join(self.coord_dir, h5)
with h5py.File(h5_path, "r") as f:
attrs = dict(f['coords'].attrs)
seg_level = attrs['patch_level']
dims = attrs['downsampled_level_dim']
#patch_size = attrs['patch_size']
dset = f['coords']
max_len = len(dset)
if max_len < float(self.max_coord_per_wsi):
#Return all coords
coords = dset[:]
else:
#Randomly select X coords
rand_ind = np.sort(random.sample(range(max_len), int(self.max_coord_per_wsi)))
coords = dset[rand_ind]
#Check that coordinates and patch resolution is within the dimensions of the WSI... slow but only done once at beginning
if self.check_white_black or self.rescale_mpp:
wsi = openslide.OpenSlide(os.path.join(self.wsi_dir, wsi_name))
#Get the desired seg level for the patching based on process list
mpp = None
if self.process_list is not None:
seg_level = self.process_list.loc[self.process_list['slide_id']==wsi_name,'seg_level'].iloc[0]
if self.rescale_mpp and 'MPP' in self.process_list.columns:
mpp = float(self.process_list.loc[self.process_list['slide_id']==wsi_name,'MPP'].iloc[0])
#if seg_level != 0:
# print('{} for {}'.format(seg_level, wsi_name))
if self.rescale_mpp and mpp is None:
try:
mpp = float(wsi.properties['openslide.mpp-x'])
except Exception as e:
print(e)
print(wsi_name)
raise ValueError('Cannot find slide MPP from process list ["MPP"] or Openslide properties. Set rescale_mpp to False to avoid this error or add slide MPPs to process list')
del_index = []
# print(wsi_name)
for i,coord in enumerate(coords):
#Check that coordinates are inside dims
changed = False
# old_coord = coord.copy()
if coord[0]+self.patch_size > dims[0]:
coord[0] = dims[0]-self.patch_size
# print('X not in bounds, adjusting')
changed = True
if coord[1]+self.patch_size > dims[1]:
coord[1] = dims[1]-self.patch_size
# print('Y not in bounds, adjusting')
changed = True
if changed:
# print("Changing coord {} to {}".format(old_coord, coord))
coords[i] = coord
# if self.check_white_black:
# patch = np.array(wsi.read_region(coord, seg_level, (self.patch_size, self.patch_size)).convert('RGB'))
#print('Checking if patch is white or black...')
# if isBlackPatch_S(patch, rgbThresh=20, percentage=0.05) or isWhitePatch_S(patch, rgbThresh=220, percentage=0.5):
#print('Removing coord because patch is black or white...')
#print(i)
# del_index.append(i)
# if len(del_index) > 0:
# print('Removing {} coords that have black or white patches....'.format(len(del_index)))
# coords = np.delete(coords, del_index, axis=0)
#Store as dictionary with tuples {0: (coord, wsi_number), 1: (coord, wsi_number), etc.}
dict_len = len(coord_dict)
for i in range(coords.shape[0]):
coord_dict[i+dict_len] = (coords[i], wsi_number)
wsi_props[wsi_name] = (seg_level, mpp)
#Storing number/index because smaller size than string
wsi_number += 1
return coord_dict, wsi_names, wsi_props
@staticmethod
def adjPatchOOB(wsi_dim, coord, patch_size):
#wsi_dim = (wsi_width, wsi_height)
#coord = (x, y) with y axis inverted or point (0,0) starting in top left of image
#patchsize = integer for square patch only
#assume coord starts at (0,0) in line with original WSI,
#therefore the patch is only out-of-bounds if the coord+patchsize exceeds the WSI dimensions
#check dimensions, adjust coordinate if out of bounds
coord = [int(coord[0]), int(coord[1])]
if coord[0]+patch_size > wsi_dim[0]:
coord[0] = int(wsi_dim[0] - patch_size)
if coord[1]+patch_size > wsi_dim[1]:
coord[1] = int(wsi_dim[1] - patch_size)
return tuple(coord)
def scalePatch(self, wsi, coord, input_mpp=0.5, desired_mpp=0.25, patch_size=512, eps=0.05, level=0):
desired_mpp = float(desired_mpp)
input_mpp = float(input_mpp)
factor = desired_mpp/input_mpp
#Openslide get dimensions of full WSI
dims = wsi.level_dimensions[0]
if input_mpp > desired_mpp + eps or input_mpp < desired_mpp - eps:
#print('scale by {:.2f} factor'.format(factor))
# if factor > 1
#input mpp must be smaller and therefore at higher magnification (e.g. desired 40x vs input 60x) and vice versa
#approach: shrink a larger patch by factor to the desired patch size or enlarge a smaller patch to desired patch size
scaled_psize = int(patch_size*factor)
#check and adjust dimensions of coord based on scaled patchsize
coord = self.adjPatchOOB(dims, coord, scaled_psize)
adj_patch = wsi.read_region(coord, level, (scaled_psize, scaled_psize)).convert('RGB')
#shrink patch down to desired mpp if factor > 1
#enlarge if factor < 1
# patch = cv2.resize(adj_patch, (patch_size, patch_size), interpolation=cv2.INTER_LINEAR)
patch = adj_patch.resize((patch_size, patch_size), Image.BILINEAR)
return patch
else:
#print('skip scaling factor {:.2f}. input um per pixel ({}) within +/- {} of desired MPP ({}).'.format(factor, input_mpp, eps, desired_mpp))
coord = self.adjPatchOOB(dims, coord, patch_size)
patch = wsi.read_region(coord, level, (patch_size, patch_size)).convert('RGB')
return patch
def _load_raw_image(self, raw_idx):
coord, wsi_num = self.coord_dict[raw_idx % self.coord_size]
wsi_name = self.wsi_names[wsi_num]
seg_level, mpp = self.wsi_props[wsi_name]
#print('opening {}'.format(wsi_name))
img_path = os.path.join(self.wsi_dir, wsi_name)
wsi = openslide.OpenSlide(img_path)
#Check if WSI already open... does this really help performance?
#Can't be pickled.... bad for multiprocessing in this case
# if self.wsi_open is None or self.wsi_open != self.wsi_names[wsi_num]:
# self.wsi = openslide.OpenSlide(img_path)
# self.wsi_open = self.wsi_names[wsi_num]
if self.rescale_mpp:
if mpp is None:
try:
mpp = wsi.properties['openslide.mpp-x']
except Exception as e:
print(e)
print(wsi_name)
raise ValueError('Cannot find slide MPP from process list or Openslide properties. Set rescale_mpp to False to avoid this error or add slide MPPs to process list.')
img = self.scalePatch(wsi=wsi, coord=coord, input_mpp=mpp, desired_mpp=self.desired_mpp, patch_size=self.patch_size, level=seg_level)
else:
img = wsi.read_region(coord, seg_level, (self.patch_size, self.patch_size)).convert('RGB')
return img
# def __getstate__(self):
# return dict(super().__getstate__())
# def _open_file(self, fname):
# return open(os.path.join(self.wsi_dir, fname), 'rb')
# def close(self):
# try:
# if self._zipfile is not None:
# self._zipfile.close()
# finally:
# self._zipfile = None
#Not implemented
# def _load_raw_labels(self):
# return None
# fname = 'dataset.json'
# if fname not in self._all_fnames:
# return None
# with self._open_file(fname) as f:
# labels = json.load(f)['labels']
# if labels is None:
# return None
# labels = dict(labels)
# labels = [labels[fname.replace('\\', '/')] for fname in self.wsi_names]
# labels = np.array(labels)
# labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
# return labels
#----------------------------------------------------------------------------