forked from btcsuite/btcd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeer.go
2052 lines (1810 loc) · 63.7 KB
/
peer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2013-2014 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"container/list"
"fmt"
"io"
prand "math/rand"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/addrmgr"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/bloom"
"github.com/btcsuite/go-socks/socks"
"github.com/davecgh/go-spew/spew"
)
const (
// maxProtocolVersion is the max protocol version the peer supports.
maxProtocolVersion = 70002
// outputBufferSize is the number of elements the output channels use.
outputBufferSize = 50
// invTrickleSize is the maximum amount of inventory to send in a single
// message when trickling inventory to remote peers.
maxInvTrickleSize = 1000
// maxKnownInventory is the maximum number of items to keep in the known
// inventory cache.
maxKnownInventory = 1000
// negotiateTimeoutSeconds is the number of seconds of inactivity before
// we timeout a peer that hasn't completed the initial version
// negotiation.
negotiateTimeoutSeconds = 30
// idleTimeoutMinutes is the number of minutes of inactivity before
// we time out a peer.
idleTimeoutMinutes = 5
// pingTimeoutMinutes is the number of minutes since we last sent a
// message requiring a reply before we will ping a host.
pingTimeoutMinutes = 2
)
var (
// nodeCount is the total number of peer connections made since startup
// and is used to assign an id to a peer.
nodeCount int32
// userAgentName is the user agent name and is used to help identify
// ourselves to other bitcoin peers.
userAgentName = "btcd"
// userAgentVersion is the user agent version and is used to help
// identify ourselves to other bitcoin peers.
userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch)
)
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
var zeroHash wire.ShaHash
// minUint32 is a helper function to return the minimum of two uint32s.
// This avoids a math import and the need to cast to floats.
func minUint32(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
// newNetAddress attempts to extract the IP address and port from the passed
// net.Addr interface and create a bitcoin NetAddress structure using that
// information.
func newNetAddress(addr net.Addr, services wire.ServiceFlag) (*wire.NetAddress, error) {
// addr will be a net.TCPAddr when not using a proxy.
if tcpAddr, ok := addr.(*net.TCPAddr); ok {
ip := tcpAddr.IP
port := uint16(tcpAddr.Port)
na := wire.NewNetAddressIPPort(ip, port, services)
return na, nil
}
// addr will be a socks.ProxiedAddr when using a proxy.
if proxiedAddr, ok := addr.(*socks.ProxiedAddr); ok {
ip := net.ParseIP(proxiedAddr.Host)
if ip == nil {
ip = net.ParseIP("0.0.0.0")
}
port := uint16(proxiedAddr.Port)
na := wire.NewNetAddressIPPort(ip, port, services)
return na, nil
}
// For the most part, addr should be one of the two above cases, but
// to be safe, fall back to trying to parse the information from the
// address string as a last resort.
host, portStr, err := net.SplitHostPort(addr.String())
if err != nil {
return nil, err
}
ip := net.ParseIP(host)
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
na := wire.NewNetAddressIPPort(ip, uint16(port), services)
return na, nil
}
// outMsg is used to house a message to be sent along with a channel to signal
// when the message has been sent (or won't be sent due to things such as
// shutdown)
type outMsg struct {
msg wire.Message
doneChan chan struct{}
}
// peer provides a bitcoin peer for handling bitcoin communications. The
// overall data flow is split into 3 goroutines and a separate block manager.
// Inbound messages are read via the inHandler goroutine and generally
// dispatched to their own handler. For inbound data-related messages such as
// blocks, transactions, and inventory, the data is passed on to the block
// manager to handle it. Outbound messages are queued via QueueMessage or
// QueueInventory. QueueMessage is intended for all messages, including
// responses to data such as blocks and transactions. QueueInventory, on the
// other hand, is only intended for relaying inventory as it employs a trickling
// mechanism to batch the inventory together. The data flow for outbound
// messages uses two goroutines, queueHandler and outHandler. The first,
// queueHandler, is used as a way for external entities (mainly block manager)
// to queue messages quickly regardless of whether the peer is currently
// sending or not. It acts as the traffic cop between the external world and
// the actual goroutine which writes to the network socket. In addition, the
// peer contains several functions which are of the form pushX, that are used
// to push messages to the peer. Internally they use QueueMessage.
type peer struct {
server *server
btcnet wire.BitcoinNet
started int32
connected int32
disconnect int32 // only to be used atomically
conn net.Conn
addr string
na *wire.NetAddress
id int32
inbound bool
persistent bool
knownAddresses map[string]struct{}
knownInventory *MruInventoryMap
knownInvMutex sync.Mutex
requestedTxns map[wire.ShaHash]struct{} // owned by blockmanager
requestedBlocks map[wire.ShaHash]struct{} // owned by blockmanager
retryCount int64
prevGetBlocksBegin *wire.ShaHash // owned by blockmanager
prevGetBlocksStop *wire.ShaHash // owned by blockmanager
prevGetHdrsBegin *wire.ShaHash // owned by blockmanager
prevGetHdrsStop *wire.ShaHash // owned by blockmanager
requestQueue []*wire.InvVect
filter *bloom.Filter
relayMtx sync.Mutex
disableRelayTx bool
continueHash *wire.ShaHash
outputQueue chan outMsg
sendQueue chan outMsg
sendDoneQueue chan struct{}
queueWg sync.WaitGroup // TODO(oga) wg -> single use channel?
outputInvChan chan *wire.InvVect
txProcessed chan struct{}
blockProcessed chan struct{}
quit chan struct{}
StatsMtx sync.Mutex // protects all statistics below here.
versionKnown bool
protocolVersion uint32
versionSent bool
verAckReceived bool
services wire.ServiceFlag
timeOffset int64
timeConnected time.Time
lastSend time.Time
lastRecv time.Time
bytesReceived uint64
bytesSent uint64
userAgent string
startingHeight int32
lastBlock int32
lastAnnouncedBlock *wire.ShaHash
lastPingNonce uint64 // Set to nonce if we have a pending ping.
lastPingTime time.Time // Time we sent last ping.
lastPingMicros int64 // Time for last ping to return.
}
// String returns the peer's address and directionality as a human-readable
// string.
func (p *peer) String() string {
return fmt.Sprintf("%s (%s)", p.addr, directionString(p.inbound))
}
// isKnownInventory returns whether or not the peer is known to have the passed
// inventory. It is safe for concurrent access.
func (p *peer) isKnownInventory(invVect *wire.InvVect) bool {
p.knownInvMutex.Lock()
defer p.knownInvMutex.Unlock()
if p.knownInventory.Exists(invVect) {
return true
}
return false
}
// UpdateLastBlockHeight updates the last known block for the peer. It is safe
// for concurrent access.
func (p *peer) UpdateLastBlockHeight(newHeight int32) {
p.StatsMtx.Lock()
defer p.StatsMtx.Unlock()
peerLog.Tracef("Updating last block height of peer %v from %v to %v",
p.addr, p.lastBlock, newHeight)
p.lastBlock = int32(newHeight)
}
// UpdateLastAnnouncedBlock updates meta-data about the last block sha this
// peer is known to have announced. It is safe for concurrent access.
func (p *peer) UpdateLastAnnouncedBlock(blkSha *wire.ShaHash) {
p.StatsMtx.Lock()
defer p.StatsMtx.Unlock()
peerLog.Tracef("Updating last blk for peer %v, %v", p.addr, blkSha)
p.lastAnnouncedBlock = blkSha
}
// AddKnownInventory adds the passed inventory to the cache of known inventory
// for the peer. It is safe for concurrent access.
func (p *peer) AddKnownInventory(invVect *wire.InvVect) {
p.knownInvMutex.Lock()
defer p.knownInvMutex.Unlock()
p.knownInventory.Add(invVect)
}
// VersionKnown returns the whether or not the version of a peer is known locally.
// It is safe for concurrent access.
func (p *peer) VersionKnown() bool {
p.StatsMtx.Lock()
defer p.StatsMtx.Unlock()
return p.versionKnown
}
// ProtocolVersion returns the peer protocol version in a manner that is safe
// for concurrent access.
func (p *peer) ProtocolVersion() uint32 {
p.StatsMtx.Lock()
defer p.StatsMtx.Unlock()
return p.protocolVersion
}
// RelayTxDisabled returns whether or not relaying of transactions is disabled.
// It is safe for concurrent access.
func (p *peer) RelayTxDisabled() bool {
p.relayMtx.Lock()
defer p.relayMtx.Unlock()
return p.disableRelayTx
}
// pushVersionMsg sends a version message to the connected peer using the
// current state.
func (p *peer) pushVersionMsg() error {
_, blockNum, err := p.server.db.NewestSha()
if err != nil {
return err
}
theirNa := p.na
// If we are behind a proxy and the connection comes from the proxy then
// we return an unroutable address as their address. This is to prevent
// leaking the tor proxy address.
if cfg.Proxy != "" {
proxyaddress, _, err := net.SplitHostPort(cfg.Proxy)
// invalid proxy means poorly configured, be on the safe side.
if err != nil || p.na.IP.String() == proxyaddress {
theirNa = &wire.NetAddress{
Timestamp: time.Now(),
IP: net.IP([]byte{0, 0, 0, 0}),
}
}
}
// Version message.
msg := wire.NewMsgVersion(
p.server.addrManager.GetBestLocalAddress(p.na), theirNa,
p.server.nonce, int32(blockNum))
msg.AddUserAgent(userAgentName, userAgentVersion)
// XXX: bitcoind appears to always enable the full node services flag
// of the remote peer netaddress field in the version message regardless
// of whether it knows it supports it or not. Also, bitcoind sets
// the services field of the local peer to 0 regardless of support.
//
// Realistically, this should be set as follows:
// - For outgoing connections:
// - Set the local netaddress services to what the local peer
// actually supports
// - Set the remote netaddress services to 0 to indicate no services
// as they are still unknown
// - For incoming connections:
// - Set the local netaddress services to what the local peer
// actually supports
// - Set the remote netaddress services to the what was advertised by
// by the remote peer in its version message
msg.AddrYou.Services = wire.SFNodeNetwork
// Advertise that we're a full node.
msg.Services = wire.SFNodeNetwork
// Advertise our max supported protocol version.
msg.ProtocolVersion = maxProtocolVersion
p.QueueMessage(msg, nil)
return nil
}
// updateAddresses potentially adds addresses to the address manager and
// requests known addresses from the remote peer depending on whether the peer
// is an inbound or outbound peer and other factors such as address routability
// and the negotiated protocol version.
func (p *peer) updateAddresses(msg *wire.MsgVersion) {
// Outbound connections.
if !p.inbound {
// TODO(davec): Only do this if not doing the initial block
// download and the local address is routable.
if !cfg.DisableListen /* && isCurrent? */ {
// Get address that best matches.
lna := p.server.addrManager.GetBestLocalAddress(p.na)
if addrmgr.IsRoutable(lna) {
addresses := []*wire.NetAddress{lna}
p.pushAddrMsg(addresses)
}
}
// Request known addresses if the server address manager needs
// more and the peer has a protocol version new enough to
// include a timestamp with addresses.
hasTimestamp := p.ProtocolVersion() >=
wire.NetAddressTimeVersion
if p.server.addrManager.NeedMoreAddresses() && hasTimestamp {
p.QueueMessage(wire.NewMsgGetAddr(), nil)
}
// Mark the address as a known good address.
p.server.addrManager.Good(p.na)
} else {
// A peer might not be advertising the same address that it
// actually connected from. One example of why this can happen
// is with NAT. Only add the address to the address manager if
// the addresses agree.
if addrmgr.NetAddressKey(&msg.AddrMe) == addrmgr.NetAddressKey(p.na) {
p.server.addrManager.AddAddress(p.na, p.na)
p.server.addrManager.Good(p.na)
}
}
}
// handleVersionMsg is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (p *peer) handleVersionMsg(msg *wire.MsgVersion) {
// Detect self connections.
if msg.Nonce == p.server.nonce {
peerLog.Debugf("Disconnecting peer connected to self %s", p)
p.Disconnect()
return
}
// Notify and disconnect clients that have a protocol version that is
// too old.
if msg.ProtocolVersion < int32(wire.MultipleAddressVersion) {
// Send a reject message indicating the protocol version is
// obsolete and wait for the message to be sent before
// disconnecting.
reason := fmt.Sprintf("protocol version must be %d or greater",
wire.MultipleAddressVersion)
p.PushRejectMsg(msg.Command(), wire.RejectObsolete, reason,
nil, true)
p.Disconnect()
return
}
// Updating a bunch of stats.
p.StatsMtx.Lock()
// Limit to one version message per peer.
if p.versionKnown {
p.logError("Only one version message per peer is allowed %s.",
p)
p.StatsMtx.Unlock()
// Send an reject message indicating the version message was
// incorrectly sent twice and wait for the message to be sent
// before disconnecting.
p.PushRejectMsg(msg.Command(), wire.RejectDuplicate,
"duplicate version message", nil, true)
p.Disconnect()
return
}
// Negotiate the protocol version.
p.protocolVersion = minUint32(p.protocolVersion, uint32(msg.ProtocolVersion))
p.versionKnown = true
peerLog.Debugf("Negotiated protocol version %d for peer %s",
p.protocolVersion, p)
p.lastBlock = msg.LastBlock
p.startingHeight = msg.LastBlock
// Set the supported services for the peer to what the remote peer
// advertised.
p.services = msg.Services
// Set the remote peer's user agent.
p.userAgent = msg.UserAgent
// Set the peer's time offset.
p.timeOffset = msg.Timestamp.Unix() - time.Now().Unix()
// Set the peer's ID.
p.id = atomic.AddInt32(&nodeCount, 1)
p.StatsMtx.Unlock()
// Choose whether or not to relay transactions before a filter command
// is received.
p.relayMtx.Lock()
p.disableRelayTx = msg.DisableRelayTx
p.relayMtx.Unlock()
// Inbound connections.
if p.inbound {
// Set up a NetAddress for the peer to be used with AddrManager.
// We only do this inbound because outbound set this up
// at connection time and no point recomputing.
na, err := newNetAddress(p.conn.RemoteAddr(), p.services)
if err != nil {
p.logError("Can't get remote address: %v", err)
p.Disconnect()
return
}
p.na = na
// Send version.
err = p.pushVersionMsg()
if err != nil {
p.logError("Can't send version message to %s: %v",
p, err)
p.Disconnect()
return
}
}
// Send verack.
p.QueueMessage(wire.NewMsgVerAck(), nil)
// Update the address manager and request known addresses from the
// remote peer for outbound connections. This is skipped when running
// on the simulation test network since it is only intended to connect
// to specified peers and actively avoids advertising and connecting to
// discovered peers.
if !cfg.SimNet {
p.updateAddresses(msg)
}
// Add the remote peer time as a sample for creating an offset against
// the local clock to keep the network time in sync.
p.server.timeSource.AddTimeSample(p.addr, msg.Timestamp)
// Signal the block manager this peer is a new sync candidate.
p.server.blockManager.NewPeer(p)
// TODO: Relay alerts.
}
// pushTxMsg sends a tx message for the provided transaction hash to the
// connected peer. An error is returned if the transaction hash is not known.
func (p *peer) pushTxMsg(sha *wire.ShaHash, doneChan, waitChan chan struct{}) error {
// Attempt to fetch the requested transaction from the pool. A
// call could be made to check for existence first, but simply trying
// to fetch a missing transaction results in the same behavior.
tx, err := p.server.txMemPool.FetchTransaction(sha)
if err != nil {
peerLog.Tracef("Unable to fetch tx %v from transaction "+
"pool: %v", sha, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
p.QueueMessage(tx.MsgTx(), doneChan)
return nil
}
// pushBlockMsg sends a block message for the provided block hash to the
// connected peer. An error is returned if the block hash is not known.
func (p *peer) pushBlockMsg(sha *wire.ShaHash, doneChan, waitChan chan struct{}) error {
blk, err := p.server.db.FetchBlockBySha(sha)
if err != nil {
peerLog.Tracef("Unable to fetch requested block sha %v: %v",
sha, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
// We only send the channel for this message if we aren't sending
// an inv straight after.
var dc chan struct{}
sendInv := p.continueHash != nil && p.continueHash.IsEqual(sha)
if !sendInv {
dc = doneChan
}
p.QueueMessage(blk.MsgBlock(), dc)
// When the peer requests the final block that was advertised in
// response to a getblocks message which requested more blocks than
// would fit into a single message, send it a new inventory message
// to trigger it to issue another getblocks message for the next
// batch of inventory.
if p.continueHash != nil && p.continueHash.IsEqual(sha) {
hash, _, err := p.server.db.NewestSha()
if err == nil {
invMsg := wire.NewMsgInvSizeHint(1)
iv := wire.NewInvVect(wire.InvTypeBlock, hash)
invMsg.AddInvVect(iv)
p.QueueMessage(invMsg, doneChan)
p.continueHash = nil
} else if doneChan != nil {
doneChan <- struct{}{}
}
}
return nil
}
// pushMerkleBlockMsg sends a merkleblock message for the provided block hash to
// the connected peer. Since a merkle block requires the peer to have a filter
// loaded, this call will simply be ignored if there is no filter loaded. An
// error is returned if the block hash is not known.
func (p *peer) pushMerkleBlockMsg(sha *wire.ShaHash, doneChan, waitChan chan struct{}) error {
// Do not send a response if the peer doesn't have a filter loaded.
if !p.filter.IsLoaded() {
if doneChan != nil {
doneChan <- struct{}{}
}
return nil
}
blk, err := p.server.db.FetchBlockBySha(sha)
if err != nil {
peerLog.Tracef("Unable to fetch requested block sha %v: %v",
sha, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Generate a merkle block by filtering the requested block according
// to the filter for the peer and fetch any matched transactions from
// the database.
merkle, matchedHashes := bloom.NewMerkleBlock(blk, p.filter)
txList := p.server.db.FetchTxByShaList(matchedHashes)
// Warn on any missing transactions which should not happen since the
// matched transactions come from an existing block. Also, find the
// final valid transaction index for later.
finalValidTxIndex := -1
for i, txR := range txList {
if txR.Err != nil || txR.Tx == nil {
warnMsg := fmt.Sprintf("Failed to fetch transaction "+
"%v which was matched by merkle block %v",
txR.Sha, sha)
if txR.Err != nil {
warnMsg += ": " + err.Error()
}
peerLog.Warnf(warnMsg)
continue
}
finalValidTxIndex = i
}
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
// Send the merkleblock. Only send the done channel with this message
// if no transactions will be sent afterwards.
var dc chan struct{}
if finalValidTxIndex == -1 {
dc = doneChan
}
p.QueueMessage(merkle, dc)
// Finally, send any matched transactions.
for i, txR := range txList {
// Only send the done channel on the final transaction.
var dc chan struct{}
if i == finalValidTxIndex {
dc = doneChan
}
if txR.Err == nil && txR.Tx != nil {
p.QueueMessage(txR.Tx, dc)
}
}
return nil
}
// PushGetBlocksMsg sends a getblocks message for the provided block locator
// and stop hash. It will ignore back-to-back duplicate requests.
func (p *peer) PushGetBlocksMsg(locator blockchain.BlockLocator, stopHash *wire.ShaHash) error {
// Extract the begin hash from the block locator, if one was specified,
// to use for filtering duplicate getblocks requests.
// request.
var beginHash *wire.ShaHash
if len(locator) > 0 {
beginHash = locator[0]
}
// Filter duplicate getblocks requests.
if p.prevGetBlocksStop != nil && p.prevGetBlocksBegin != nil &&
beginHash != nil && stopHash.IsEqual(p.prevGetBlocksStop) &&
beginHash.IsEqual(p.prevGetBlocksBegin) {
peerLog.Tracef("Filtering duplicate [getblocks] with begin "+
"hash %v, stop hash %v", beginHash, stopHash)
return nil
}
// Construct the getblocks request and queue it to be sent.
msg := wire.NewMsgGetBlocks(stopHash)
for _, hash := range locator {
err := msg.AddBlockLocatorHash(hash)
if err != nil {
return err
}
}
p.QueueMessage(msg, nil)
// Update the previous getblocks request information for filtering
// duplicates.
p.prevGetBlocksBegin = beginHash
p.prevGetBlocksStop = stopHash
return nil
}
// PushGetHeadersMsg sends a getblocks message for the provided block locator
// and stop hash. It will ignore back-to-back duplicate requests.
func (p *peer) PushGetHeadersMsg(locator blockchain.BlockLocator, stopHash *wire.ShaHash) error {
// Extract the begin hash from the block locator, if one was specified,
// to use for filtering duplicate getheaders requests.
var beginHash *wire.ShaHash
if len(locator) > 0 {
beginHash = locator[0]
}
// Filter duplicate getheaders requests.
if p.prevGetHdrsStop != nil && p.prevGetHdrsBegin != nil &&
beginHash != nil && stopHash.IsEqual(p.prevGetHdrsStop) &&
beginHash.IsEqual(p.prevGetHdrsBegin) {
peerLog.Tracef("Filtering duplicate [getheaders] with begin "+
"hash %v", beginHash)
return nil
}
// Construct the getheaders request and queue it to be sent.
msg := wire.NewMsgGetHeaders()
msg.HashStop = *stopHash
for _, hash := range locator {
err := msg.AddBlockLocatorHash(hash)
if err != nil {
return err
}
}
p.QueueMessage(msg, nil)
// Update the previous getheaders request information for filtering
// duplicates.
p.prevGetHdrsBegin = beginHash
p.prevGetHdrsStop = stopHash
return nil
}
// PushRejectMsg sends a reject message for the provided command, reject code,
// and reject reason, and hash. The hash will only be used when the command
// is a tx or block and should be nil in other cases. The wait parameter will
// cause the function to block until the reject message has actually been sent.
func (p *peer) PushRejectMsg(command string, code wire.RejectCode, reason string, hash *wire.ShaHash, wait bool) {
// Don't bother sending the reject message if the protocol version
// is too low.
if p.VersionKnown() && p.ProtocolVersion() < wire.RejectVersion {
return
}
msg := wire.NewMsgReject(command, code, reason)
if command == wire.CmdTx || command == wire.CmdBlock {
if hash == nil {
peerLog.Warnf("Sending a reject message for command "+
"type %v which should have specified a hash "+
"but does not", command)
hash = &zeroHash
}
msg.Hash = *hash
}
// Send the message without waiting if the caller has not requested it.
if !wait {
p.QueueMessage(msg, nil)
return
}
// Send the message and block until it has been sent before returning.
doneChan := make(chan struct{}, 1)
p.QueueMessage(msg, doneChan)
<-doneChan
}
// handleMemPoolMsg is invoked when a peer receives a mempool bitcoin message.
// It creates and sends an inventory message with the contents of the memory
// pool up to the maximum inventory allowed per message. When the peer has a
// bloom filter loaded, the contents are filtered accordingly.
func (p *peer) handleMemPoolMsg(msg *wire.MsgMemPool) {
// Generate inventory message with the available transactions in the
// transaction memory pool. Limit it to the max allowed inventory
// per message. The the NewMsgInvSizeHint function automatically limits
// the passed hint to the maximum allowed, so it's safe to pass it
// without double checking it here.
txDescs := p.server.txMemPool.TxDescs()
invMsg := wire.NewMsgInvSizeHint(uint(len(txDescs)))
for i, txDesc := range txDescs {
// Another thread might have removed the transaction from the
// pool since the initial query.
hash := txDesc.Tx.Sha()
if !p.server.txMemPool.IsTransactionInPool(hash) {
continue
}
// Either add all transactions when there is no bloom filter,
// or only the transactions that match the filter when there is
// one.
if !p.filter.IsLoaded() || p.filter.MatchTxAndUpdate(txDesc.Tx) {
iv := wire.NewInvVect(wire.InvTypeTx, hash)
invMsg.AddInvVect(iv)
if i+1 >= wire.MaxInvPerMsg {
break
}
}
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
p.QueueMessage(invMsg, nil)
}
}
// handleTxMsg is invoked when a peer receives a tx bitcoin message. It blocks
// until the bitcoin transaction has been fully processed. Unlock the block
// handler this does not serialize all transactions through a single thread
// transactions don't rely on the previous one in a linear fashion like blocks.
func (p *peer) handleTxMsg(msg *wire.MsgTx) {
// Add the transaction to the known inventory for the peer.
// Convert the raw MsgTx to a btcutil.Tx which provides some convenience
// methods and things such as hash caching.
tx := btcutil.NewTx(msg)
iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
p.AddKnownInventory(iv)
// Queue the transaction up to be handled by the block manager and
// intentionally block further receives until the transaction is fully
// processed and known good or bad. This helps prevent a malicious peer
// from queueing up a bunch of bad transactions before disconnecting (or
// being disconnected) and wasting memory.
p.server.blockManager.QueueTx(tx, p)
<-p.txProcessed
}
// handleBlockMsg is invoked when a peer receives a block bitcoin message. It
// blocks until the bitcoin block has been fully processed.
func (p *peer) handleBlockMsg(msg *wire.MsgBlock, buf []byte) {
// Convert the raw MsgBlock to a btcutil.Block which provides some
// convenience methods and things such as hash caching.
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
// Add the block to the known inventory for the peer.
iv := wire.NewInvVect(wire.InvTypeBlock, block.Sha())
p.AddKnownInventory(iv)
// Queue the block up to be handled by the block
// manager and intentionally block further receives
// until the bitcoin block is fully processed and known
// good or bad. This helps prevent a malicious peer
// from queueing up a bunch of bad blocks before
// disconnecting (or being disconnected) and wasting
// memory. Additionally, this behavior is depended on
// by at least the block acceptance test tool as the
// reference implementation processes blocks in the same
// thread and therefore blocks further messages until
// the bitcoin block has been fully processed.
p.server.blockManager.QueueBlock(block, p)
<-p.blockProcessed
}
// handleInvMsg is invoked when a peer receives an inv bitcoin message and is
// used to examine the inventory being advertised by the remote peer and react
// accordingly. We pass the message down to blockmanager which will call
// QueueMessage with any appropriate responses.
func (p *peer) handleInvMsg(msg *wire.MsgInv) {
p.server.blockManager.QueueInv(msg, p)
}
// handleHeadersMsg is invoked when a peer receives a headers bitcoin message.
// The message is passed down to the block manager.
func (p *peer) handleHeadersMsg(msg *wire.MsgHeaders) {
p.server.blockManager.QueueHeaders(msg, p)
}
// handleGetData is invoked when a peer receives a getdata bitcoin message and
// is used to deliver block and transaction information.
func (p *peer) handleGetDataMsg(msg *wire.MsgGetData) {
numAdded := 0
notFound := wire.NewMsgNotFound()
// We wait on the this wait channel periodically to prevent queueing
// far more data than we can send in a reasonable time, wasting memory.
// The waiting occurs after the database fetch for the next one to
// provide a little pipelining.
var waitChan chan struct{}
doneChan := make(chan struct{}, 1)
for i, iv := range msg.InvList {
var c chan struct{}
// If this will be the last message we send.
if i == len(msg.InvList)-1 && len(notFound.InvList) == 0 {
c = doneChan
} else if (i+1)%3 == 0 {
// Buffered so as to not make the send goroutine block.
c = make(chan struct{}, 1)
}
var err error
switch iv.Type {
case wire.InvTypeTx:
err = p.pushTxMsg(&iv.Hash, c, waitChan)
case wire.InvTypeBlock:
err = p.pushBlockMsg(&iv.Hash, c, waitChan)
case wire.InvTypeFilteredBlock:
err = p.pushMerkleBlockMsg(&iv.Hash, c, waitChan)
default:
peerLog.Warnf("Unknown type in inventory request %d",
iv.Type)
continue
}
if err != nil {
notFound.AddInvVect(iv)
// When there is a failure fetching the final entry
// and the done channel was sent in due to there
// being no outstanding not found inventory, consume
// it here because there is now not found inventory
// that will use the channel momentarily.
if i == len(msg.InvList)-1 && c != nil {
<-c
}
}
numAdded++
waitChan = c
}
if len(notFound.InvList) != 0 {
p.QueueMessage(notFound, doneChan)
}
// Wait for messages to be sent. We can send quite a lot of data at this
// point and this will keep the peer busy for a decent amount of time.
// We don't process anything else by them in this time so that we
// have an idea of when we should hear back from them - else the idle
// timeout could fire when we were only half done sending the blocks.
if numAdded > 0 {
<-doneChan
}
}
// handleGetBlocksMsg is invoked when a peer receives a getblocks bitcoin message.
func (p *peer) handleGetBlocksMsg(msg *wire.MsgGetBlocks) {
// Return all block hashes to the latest one (up to max per message) if
// no stop hash was specified.
// Attempt to find the ending index of the stop hash if specified.
endIdx := database.AllShas
if !msg.HashStop.IsEqual(&zeroHash) {
height, err := p.server.db.FetchBlockHeightBySha(&msg.HashStop)
if err == nil {
endIdx = height + 1
}
}
// Find the most recent known block based on the block locator.
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
// This mirrors the behavior in the reference implementation.
startIdx := int64(1)
for _, hash := range msg.BlockLocatorHashes {
height, err := p.server.db.FetchBlockHeightBySha(hash)
if err == nil {
// Start with the next hash since we know this one.
startIdx = height + 1
break
}
}
// Don't attempt to fetch more than we can put into a single message.
autoContinue := false
if endIdx-startIdx > wire.MaxBlocksPerMsg {
endIdx = startIdx + wire.MaxBlocksPerMsg
autoContinue = true
}
// Generate inventory message.
//
// The FetchBlockBySha call is limited to a maximum number of hashes
// per invocation. Since the maximum number of inventory per message
// might be larger, call it multiple times with the appropriate indices
// as needed.
invMsg := wire.NewMsgInv()
for start := startIdx; start < endIdx; {
// Fetch the inventory from the block database.
hashList, err := p.server.db.FetchHeightRange(start, endIdx)
if err != nil {
peerLog.Warnf("Block lookup failed: %v", err)
return
}
// The database did not return any further hashes. Break out of
// the loop now.
if len(hashList) == 0 {
break
}
// Add block inventory to the message.
for _, hash := range hashList {
hashCopy := hash
iv := wire.NewInvVect(wire.InvTypeBlock, &hashCopy)
invMsg.AddInvVect(iv)
}
start += int64(len(hashList))
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
invListLen := len(invMsg.InvList)
if autoContinue && invListLen == wire.MaxBlocksPerMsg {
// Intentionally use a copy of the final hash so there
// is not a reference into the inventory slice which
// would prevent the entire slice from being eligible
// for GC as soon as it's sent.
continueHash := invMsg.InvList[invListLen-1].Hash
p.continueHash = &continueHash
}
p.QueueMessage(invMsg, nil)
}
}